
CHAPTERS 

Design of Digital Control Systems Using 
Transform Techniques 

5.1 INTRODUCTION 

The idea of controlling processes that evolve in time is ubiquitous. Systems 
from airplanes to the national rate of unemployment, from unmanned space 
vehicles to human blood pressure, are considered fair targets for control. 
Over a period of three decades from about 1930 until 1960, a body of control 
theory was developed based on electronic feedback amplifier design modi­
fied for servomechanism problems. This theory was coupled with electronic 
technology suitable for implementing the required dynamic compensators to 
give a set of approaches to solve control problems now often called classical 
techniques. The landmark references to this theory are Nyquist (1932), Bode 
(1945), and Evans (1950). For random inputs, the work of Wiener (1948) 
should be added. An excellent pedagogical presentation of these methods is 
given in Truxal (1955). The unifying theme of these methods is the use of 
Laplace or Fourier transform representations of the system dynamics and the 
control specifications; hence, we refer to them here as transform techniques 
after the central role of the frequency domain in the approach. 

In this chapter, we discuss the use of transform techniques in the design 
of digital control systems. First, we describe the use of discrete equivalents 
to construct a digital controller indirectly from a continuous design. This 
method is referred to as emulation or s-plane design. It is attractive because 
the design is carried out exactly as if the system were continuous, the only 
change due to the digital implementation being the extra step of emulating 
the resulting compensation in a discrete form. Another method of design 
is to discretize the system model at the outset, then to perform the design 
entirely using the discrete representation. This method is referred to as z­
plane design, discrete design, or direct digital design. 
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Modifications of the transform techniques are necessary to make them 
directly applicable to discrete design. We find that the root locus can be 
transferred unchanged to the z-plane, but the interpretation of the results is 
different than in the s-plane. Frequency-response methods can also be used 
in a way similar to the way they were used in continuous systems, but the 
Bode hand-plotting methods are no longer useful and the calculation of gain 
and phase margins requires the use of a computer. 

Sometimes discrete frequency response design is carried out by using a 
bilinear (Tustin) transformation similar to the one used in Chapter 4. It is 
called the w-transform. This technique is often referred to as w-plane design. 
It allows the use of Bode's techniques for hand plotting the magnitude and 
phase and is, therefore, particularly useful when not using a computer. 

In many cases, use of both emulation and discrete design methods gives 
the best result. The discrete controller is initially determined using the em­
ulation method, and then z-plane analysis tools are used to verify or to 
modify the design. 

As with any control design, a subsequent step consisting of numerical 
simulation of the system including all known delays and nonlinearities is an 
important addi~ional effort. It often identifies deficiencies in the design that 
arose because of the approximations made to arrive at the linear model that 
is required for the transform techniques. A simulation offers the opportunity 
to modify the design based on more detailed models before committing to 
hardware. This is discussed further in Chapter 11. 

5.2 CONTROL SYSTEM SPECIFICATIONS 

Before describing how the transform techniques can be applied to digital 
control designs, we must first review the control specification ideas for con­
tinuous systems and discuss how these specifications are interpreted and 
modified for discrete systems. 

Example 5.1: The specifications for the design of the azimuth 
control of an antenna to pick up signals from a low-altitude commu­
nications satellite (discussed in Appendix A) are: 

1. Tracking error to a ramp input less than 0.01 rad. 

2. Overshoot to a step input::; 16%. 

3. Settling time to within 1 % ::; 10 sec. 
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Figure 5.1 . Model of an antenna tracking control. 

The equations of motion for the antenna are 

.. . 
Je + Be = Te + Td, (5.1) 

where e is the antenna pointing angle, Te is the drive-motor torque, 
and Td is the wind torque. The system parameters are the moment 
of inertia of the moving parts, J, and the damping coefficient, B, 
consisting of the mechanical friction component and the back emf 
effect of the electric motor. We will assume that the time constant, 
JIB, is equal to 10 sec. A block diagram of the antenna system is 
shown in Fig. 5.l. 

The transfer function of the system, or plant, can be written as 

e(s) 1 
G(s) = U(s) = 8(108+1)' (5.2) 

where u = Tel B. 
The aim of the design is to measure the error between the angle 

of the satellite es and the antenna and compute Te so that the error, 
e, (= e8 -e), is always less than 0.01 rad during tracking. The satellite 
angle that must be followed can be adequately approximated by a 
fixed velocity, 

es(t) = (O.Olrad/sec) t. (5.3) 

Fig. 5.2 shows a generic block diagram of a unity feedback closed-loop system 
that applies directly to this example and many other systems. In the figure, 
the wind disturbance enters in normalized form as w = Tdl B, the reference 
input, es , is referred to as r, and the antenna angle, e, is referred to as y. 
The block containing D is the controller that we will be designing. 
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Figure 5.2 A unity feedback system. 

The worst possible wind torque can be approximated as a gust that 
comes suddenly and holds constant for several seconds. We will approximate 
this by a step function and require that the transients must be settled out in 
less than 10 sec to leave a total steady-state error within the tracking-error 
specifications. 

Performance characteristics that must be specified for this system, which 
are charaCteristic of many others, can now be l~sted. They are: 

1. Steady-state tracking accuracy 

2. Transient accuracy (dynamic response): 

a) stability 

b) rise time 

c) overshoot 

d) settling time 

3. Disturbance rejection: 

a) ~~eady state 

b) trap.sient 

4. Control effort required: 

a) maximum magnitude of u 

b) energy KJu2dt 

5. Sensitivity to parameter changes 

Steady-state accuracy refers to the requirement that after all transients 
are negligible, the error r - y or,· for the antenna, Os - 0, must be accept­
ably Small. The two causes of nonzero error are the reference r and the 
disturbance w. Consider first the reference. Some control systems have a 
finite 'nonzero steady-state error when the refer.ehce is a constant: Such sys­
tems ate labeled "Type 0," because there is finite error with a zero-order 
polynomial input. The reason for the error can be seen from Fig. 5.2: The 
finite dc gain between e and y r~quires that e be nonzero in order for y to 
be nonzero. Similarly, a control system that has finite nonzero steady-state 
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error to a first-order polynomial input (a ramp) is called a "Type I" system. 
And then comes "Type II," mutatis mutandis. l In each case, the disturbance 
w is taken to be zero. However, in evaluating the system we must include 
the effects of w in the final calculations. In general, we add the errors due to 
reference and disturbance to find a total system error, which must be within 
acceptable limits (in this case, beam width of the tracker antenna) . 

To compute the steady-state error due to r or w, we assume the system 
is stable and use the final-value theorem. Suppose the unity feedback system 
shown in Fig. 5.2 has a reference input that is a step function and that the 
disturbance is zero. The error will have the transform, 

R(s) 
E(s) = 1 + D(s)G(s) 

1 1 

-:; 1+D(s)G(s)" 

The final value of e(t), if the closed-loop system is stable, is 

( ) 1
. 1 1. 

e 00 = 1m s - ( ) G ( )' 8--+0 S 1 + D s s 

and, therefore, for the example with a step input, e( (0) = 0 because 

lim G(s) = 00 . 
8--+0 

For a unit ramp input, 

e ( (0) = lim s ~ 1 , 
8--+0 s2 1 + D ( s ) G ( s ) 

and the error is finite if 

lim sD(s)G(s) 
8--+0 

(5.4) 

is finite. This will be true for the example if D has a finite dc gain (no 
integrator). In fact, in this case, because 

lim sG(s) = 1 
8--+0 

1 With necessary changes, i.e., with "second" for "first" and "II" for "1." 
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the error to a unit ramp is 

e(oo) = lim D1( ). 
8-+0 S 

Thus, if the system were being controlled with a continuous controller, the 
required specification of maintaining the error less than 0.01 rad for a 08 

ramp input of 0.01 rad/sec would be met if 

1
. 1 
1m D( ) ::; 1. 8-+0 S 

In other words, the dc gain of D(s) must be greater than or equal to 1. 
Another way of stating these results is that the velocity error constant, K v , 

must be greater than or equal to 1, where 

Kv = lim sD(s)G(s). 
8-+0 

All these same ideas can be applied when D is implemented in a computer 
and represented by its discrete transfer function D(z). Analysis of this case, 
however, requires that we find the discrete transfer function of the plant, 
that is, the portion referred to as G in Fig. 5.2. 

In order to do this, we need to know how the computer's output is 
transferred to act upon the continuous portion of the system; that is, we 
need to know what kind of hold is used between the outputs of D at discrete 
instances and the continuous G (s). Although different holds are possible, by 
far the most common is the zero-order hold (ZOH), discussed in Chapters 
1, 3, and 4. It consists of simply holding the computer output at 'a constant 
value throughout the sample period until a new sample is obtained, at which 
time a new output is determined and held, and so forth. This results in a 
discontinuous signal with steps at each sample instant. Integrated circuits to 
perform this function, called sample-and-hold ampliji(:.rs, are readily avail­
able. 

It is sometimes useful to pass the output of a ZOH through a low­
pass filter to remove the discontinuities. This can be desirable for reducing 
vibration and extending the lifetime of certain actuators, especially hydraulic 
ones. However, nothing comes free! The smoother signals have more lag, with 
the associated detrimental effect on stability. 

The portion of the system for which we desire a discrete representation, 
G(z), is shown in Fig. 5.3. Its inputs are the sampled signals, u(n), from D 
(the computer) and its outputs are the samples from the plant, y(n). There 
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u(n) ~ y en) 
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G(z) 

Figure 5.3 The discrete model of the continuous part of the system. 

is an exact discrete representation . of this, which has already been studied 
in Chapter 2. Applying (2.39) we find that 

I C(z) = (1- z-1) Z {~} ·1 (5.5) 

The closed-loop system can now be represented in a purely discrete manner. 
The discrete transfer functions of the controller, D(z), and the plant, G(z),\ 
are combined as before according to Fig. 5.2, where it is now understood 
that the reference. r and the disturbance ware sampled versions of their 
continuous counterparts. 

Proceeding as we did for the continuous system, suppose the input r is 
a step, r(n) = 1(n), and the disturbance w is zero. The transform of the 
error is computed using the Same block-diagram reduction tools that apply 
for continuous systems represented by their Laplace transforms, except that 
now we use D(z) and G(i). Doing this yields the transform of the error 

E z _ R(z) 
( ) - 1 + D(z)G(z) 

z 1 

- z - 1 1 + D(z)G(z)' 

The final value of e(k), if the closed loop system is stable with all roots of 1 
+ DG = 0 inside the unit circle, is, by (2.100), 

e(oo) = l~(z - 1) z ~ 1 1 + D(~)G(Z) 
1 

- -----
1 + D(l)G(l) 

6. 1 
- l+Kp ' 

(5.6' 
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Thus, D(l)G(l) is the position constant, K p , of the Type 0 system. If DG 
has a pole at z = 1, 'then the error given by (5.6) is zero. Suppose there is 
a single pole at z = 1. Then we have a Type I system and we can compute 
the error to a unit ramp input, that is, r = t l(t). Then 

Tz 1 
E(z) = (z - 1)2 1 + D(z)G(z)' 

Now the steady-state error is 

e(oo) = lim(z - 1) ( TZ)2 1
DG z-+l z - 1 1 + 

1
. Tz = Im -----------------

z-+l (z - 1)(1 + D(z)G(z)) 

/':,. 1 

Kv 
(5.7) 

Thus the velocity constant of a Type I discrete system with unity feedback 
(as shown in Fig. 5.2) is 

Kv = lim (z - 1)(1 ; D(z)G(z)), 
z-+l z 

which simplifies to 

Kv = lim (z - l)D(z)G(z) . 
z-+l Tz 

(5.8) 

Although it appears from (5.8) that Kv is i'nversely proportional to the 
sample period, in fact, this is not the case if comparing for the same G(s). 
The reason is that the loop gain of G(z) is essentially proportional to the 
sample period. This proportionality is exact for the very simple cas€ where 
G (s) = 1/ s, as can be seen by using (5.5) and inspecting entry 4 in Appendix' 
B.2: For systems with a finite Kv and fast sample rates, this proportional- -' 
ity will be approximately correct. The result of this proportionality is that 
Kv of a continuous plant alone preceded by a ZOH is essentially the same 
whether evaluated with the discrete representation or the continuous one 
(see Problem 5.16). 

Because systems of Type I occur frequently, it is useful to observe that 
the value of Kv is fixed by the closed-loop poles and zeros by a relation 
given, for the continuous case, by Truxal (1955). Suppose the overall transfer 
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function Y/ R is H(z) and that H(z) has poles Pi and zeros Zi· Then we can 
write 

(5.9) 

Now suppose that H( z ) is the transfer function of a Type I system, which 
implies that the steady-state error of this system to a step is zero and requires 
that 

H(l) = 1. 

Furthermore, by definition we can express the error to a ramp as 

E(z) = R(l - H(z)) 

Tz 
(z _ 1)2 (1 - H(z)), 

and the final value of this error is given by 

e(oo) = lim(z - 1) ( Tz )2 (1 - H(z)) = ~; 
z- >l z -1 Kv 

(5.10) 

therefore (omitting a factor of z in the numerator, which makes no difference 
in the result) 

1 = lim 1 - H (z) . 
TKv z-tl Z - 1 

(5.11) 

Because of (5.10), the limit in (5.11) is indeterminate, and so we can use 
L'H6pital's rule 

_ 1_ = lim (d/dz)(l - H(z)) 
TKv z-tl (d/dz)(z -1) 

= lim _ dH(z). 
z-tl dz 

However, note that by (5.10) again, at z = 1, we have 

dId d 
dz In H(z) = H dzH(z) = dzH(z), 
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so that 

_1_ = lim - ~ In H(z) 
TKv z-+l dz 

= lim _ ~ {lnKII(z - Zi)} 
z-+l dz II(z - Pi) 

= lim - dd {L In (z - Zi) - L In (z - Pi) + In K} 
z-+l Z 

_1 _ lim {L _1 __ L 1 } 
T Kv z-+l Z - Pi Z - zl 

n 1 n 1 

= ~ 1 - Pi - t1 1 - Zi . 

We note especially that the farther the poles of the closed-loop system are 
from Z = 1, the larger the velocity constant and the smaller the errors. 
Similarly, Kv can be increased and the errors decreased by zeros close to 
Z = 1. From the results of Chapter 2 on dynamic response, we recall that 
a zero close to z = 1 usually signals large overshoot and poor dynamic 
response. Thus is expressed one of the classic trade-off situations: we must 
balance small steady-state errors against good transient response. 

Example 5.2: For our antenna problem, we have specified that 
a unit ramp produce a steady-state error no more than 0.01 rad. 
From (5.7) we see that a Kv 2: 1 will satisfy the specification for this 
problem, an identical result to the continuous case. In fact, ideas of 
steady-state error from continuous systems generally carryover to 
discrete systems with very little change. 

Transient accuracy, or dynamic response, refers to the ability of the 
system to keep the error small as r(t) changes. Specifications of transient 
performance can be made in the time domain and then translated to the 
frequency domain either in terms of characteristic pole locations in s or z, 
or in terms of frequency-response features such as bandwidth and phase 
margin. We will aim to consider specifications in terms of characteristic root 
locations in the z-plane by transformihg the desired s-plane specifications 
to equivalent locations in the z-plane. This is accomplished by using the 
relation z = esT to map the poles in the s-plane to the z-plane. 
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First we need to transfer the transient specifications from a time descrip­
tion to an s-plane pole-location requirement. In Fig. 5.4(a) are plotted the 
step responses of a second-order system with unity de gain, no finite zeros, 
and various damping ratios. We see immediately that the major influence 
on percent overshoot is the damping ratio, (. In Fig. 5.4(b) is plotted the 
value of this feature against (. A specification on percent overshoot can, 
for the second-order system, be translated into a specification of (. Note 
also that we should refer to Chapter 2 and Figs. 2.30 and 2.31, where we 
plotted our finding that an extra zero can also greatly influence overshoot. 
We must consider both ( and the zero locations to help meet specifications 
for transient response on percent overshoot. For the case without an extra 
zero, Fig. 5.4(b) shows that, very roughly, 

% overshoot ~ (1 - (/0.6)100 

for a second-order system. Thus, given a requirement on percent overshoot, 
we reqUIre 

I" ( ) ( _ % overshoot) 
., 2: 0.6 1 100 . 

Another feature of interest is the rise time of the response toward its 
final value. By inspection of Fig. 5.4(a) we see that the time scale is in 
terms of Wn , the distance of the poles from the origin of the s-plane. Thus 
the rise time will certainly be shorter as Wn is increased. Although there is 
some dependence of rise time on (, we can take the curve for ( = 0.5 to be 
about the center of the distribution and thus approximate the rise time by 

where we take tr to be the time necessary for the response to rise from 0.1 
to 0.9. A requirement on tr thus becomes a requirement that Wn satisfy 

(5.12) 

The final time-domain feature of importance to us is the settling time. 
This is the time required for the response to settle to within some small 
fraction of its steady-state value and stay there. For the prototype second­
order system, we can return to the mathematics of the solution to conclude 
that the transient is of the form 
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Figure 5.4 (a) Typical time responses for a second-order system. (b) Dependence 
of overshoot on damping ratio for second-order system. (From Franklin, G. F., Pow­
ell, J. D., and Emami-Naeini, .A., Feedback Control of Dynamic Systems, Addison­
Wesley, 1986.) 

where Wd = Wn }1 - (2. The point is ,that the transient portion of this 
signal is contained in an envelope of e-(wn t , where -(wn is the real part of 
the root location. Thus, we can require that (wn be large enough that the 
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(a) (b) (c) 

Figure 5.5 The mapping of s-plane specifications to the z-plane. (a) Damping; (b) 
frequency; (c) settling time. 

transient will be squeezed into whatever error-tolerance band we choose. A 
typical value of the error-tolerance is 1 %, for which we compute the envelope 
function to be 

and thus 

(5.13) 

or, in order to settle in t8 sec or less, we require that 

We now need to convert these specifications into guidelines on the place­
ment of poles in the z-plane in order to guide the design of digital controls. 
We do so by mapping via z = e8T. Thus the restriction on percent overshoot 
has been expressed as a restriction on damping ratio, (. In the z-plane, curves 
of pole locations for constant ( are logarithmic spirals, as sketched in Fig. 
5.5(a) for ( = 0.5. The forbidden region is indicated by the partial hatching. 
The restriction on rise time is the requirement that the natural frequency 
be greater than a certain value. In the z-plane the curves of constant Wn 

are lines drawn at right angles to the constant ( spirals. A given value is 
sketched in Fig. 5.5(b), again with the hatching on the undesirable side of 
the line. The final time-domain specification was in terms of settling time. In 
this case, the real parts of the roots, -(wn, were restricted. Because the s-z 
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Figure 5.6 Plot of acceptable region for poles of a second-order system to satisfy 
dynamic response specification. 

mapping has. thez-plane root radius at r = e-(WnT , we see at once that a 
settling-time restriction maps into a restriction that the z-plane poles should 
be inside a circle given by 

r - e - 4.6Tjts 0- , 

which, when sketched, looks like Fig. 5.5{c). 
The final effect is drawn in Fig. 5.6, where we have arbitrarily picked 

the desired specifications as overshoot ~ 16%, tT ~ 6 sec, and ts ~ 20 sec. 
Assuming T = 1 sec, we find that 

% overshoot ~ 16% ::::} ( 2: 0.5, 

1.8 
tT ~ 6 ::::} Wn 2: 6' 
ts ~ 20 ::::} r ~ 0.8. 
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The region forbidden by these specifications is indicated by the partial 
hatching along the line for Wn = 7r /10T to the circle of radius 0.8 to the 
spiral of ( = 0.5 and then on around the spiral. These curves are approxi­
mate as befits a design process that is essentially a set of guidelines to the 
pole locations of a closed-loop system. The final design must be checked by 
simulation and/or experiment, and modifications must be made as indicated 
by the manner in which the first design fails to meet the specifications. For 
example, if a trial design has a settling time that is too long, then the radius 
of the poles should be reduced. Likewise, if corrections to overshoot and rise 
time are needed, Fig 5.6 indicates how the specified z-plane pole locations 
should be modified to accomplish the desired result. 

The effectiveness of the system in disturbance rejection is readily studied 
with the topology of Fig. 5.2. From the figure, if we take r = 0, we find 

(5.14) 

If the loop gain, I DCI , is large compared to 1, then (5.14) reduces to 

E(z) ~ W/ D(z) . 

Thus the extent of disturbance reduction is given by the amount of gain that 
precedes the disturbance in the loop. In particular, if w(k) is a constant, then 
an integrator in D (pole at z = 1) will cause the steady-state error due to 
the disturbance to be zero. From the point of view of frequency response, a 
disturbance at w in Fig. 5.2 will be rejected over the frequency range where 
I DC I » 1 and I D I » 1, and also over the range where I C 1-« 1 and 
IDCI:::; 1. 

The control effort required to perform a control task is important on 
several counts. Because all physical variables are bounded, the device that 
provides the control, such as the motor that drives the tracking antenna, 
can put out only a certain maximum torque even when turned on fully. It 
is pointless to try to get 100 N-m out of a 10 mN-m motor! Conversely, 
after completion of a design meeting dynamic-response specifications, we 
can simulate a worst-case transient; and from the size of the control signal 
required, we can determine the size of the motor necessary to meet these 
specifications. In addition to peak control, I u I, we are sometimes interested 
in the total heat generated by the drive motor. This, too, will influence 
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the size and design (and expense) of the motor. Usually this number is 
proportional to J u2dt, over a typical transient period. Another measure of 
control effort arises in gas jets used for attitude control of satellites, where 
the total fuel used is a proper measure of control effort, and where the 
fuel expenditure is proportional to Joool u Idt. The theory and applications 
of optimal control are an effort to include these objectives directly in the 
design. In this chapter, we restrict ourselves to analysis of control effort after 
the fact, and we suggest that a simulation of the final design will determine 
whether design is satisfactory from the point of view of control effort. If given 
a choice, we will prefer that design which gives the smallest value of control 
effort while meeting the error (dynamic and steady-state) specifications. 
Many of these ideas are discussed further in Chapters 9 and 11. 

Finally, sensitivity to parameter changes needs to be studied separately 
for changes in plant parameters and for changes in controller parameters. As 
to changes in the parameters of the plant, the situation is very much like the 
disturbance-signal rejection, and both features are contained in the concept 
of robustness as discussed briefly in Chapter 2. The larger the gain of the 
feedback loop around the offending parameter, the lower the sensitivity of 
the transfer function to changes in that parameter. Because in the most 
common cases we have very slowly varying parameters, we are led to design 
for high gain in the vicinity of z = 1, which corresponds to very slow or 
constant signals. If this high gain is in front of the disturbance, then we 
will also achieve good disturbance rejection. The secoI).d aspect concerns 
the effects of changes in the controller, D(z). Here, we have control over 
the topology, and a design choice can be made to minimize the effects of 
parameter changes in D(z). Furthermore, in a digital control, the effects 
of round-off errors and truncation in realization of parameters in D(z) are 
important; in Chapter 7 we discuss selection of canonical realizations to 
minimize these effects. 

The designer's job is to meet the specifications. This can typically be 
done in many different ways. There are different kinds of actuators that can 
be used, different sensors and sensed quantities are possible for selection, 
choices in the plant design are a desigl1 variable, and the control law can be 
selected. The designer must pick the most cost-effective combination of these 
options to meet the desired system performance. This chapter and Chapters 
6 and 9 will concentrate on the options available in designing the control 
law; however, the reader is encouraged to examine the design example in 
Section 12.7 in order to have a more accurate picture of the kind of options 
that a designer typically has available. 
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5.3 DESIGN USING EMULATION 

The first part of this design procedure should already be familiar to the 
reader because it consists of the design of a continuous-control system. Many 
textbooks have been written on the subject, for example, Franklin, Powell, 
and Emami (1986). The design is done in the s-plane, using root-locus or 
frequency-response techniques to derive a satisfactory D(s) as the controller. 
This step totally ignores the fact that a sampler and digital computer will 
eventually be used. Having D(s), we then convert the design to a digital 
control by considering D (s) to be a filter transfer function and applying 
one of the techniques from Chapter 4 to obtain an equivalent D(z). The 
example designs will show that the method produces a good controller for the 
case where the sampling rate is 30 times faster than the system bandwidth 
but produces a controller needing further refinement for the case where the 
sampling rate is 6 times the bandwidth. 

Carrying out the initial design using continuous methods is a good idea 
independent of whether it will be used in a subsequent emulation step or 
merely as a guide for a direct discrete design. Knowing how the system could 
perform if implemented with continuous hardware provides a target for how 
well the digital system should perform and aids in selecting the sample rate. 

Another method for emulating a continuous design is to use an optimal 
control formulation. This is discussed in Section 9.4.5. 

Example 5.3: We will now apply the design technique to the task 
of determining a discrete controller for the antenna tracker discussed 
in examples 5.1 and 5.2. 

The specification that the overshoot be less than 16% 'requires, 
according to Fig. 5.4(a), that ( must be 2: 0.5 for a second order 
system. The specification of settling time, ts :::; 10 sec, with (5.13), 

4.6 
ts= -­

(wn 

shows that a closed loop Wn rv 1 rad/sec will satisfy the requirements. 
The process starts by applying the s-plane techniques for control­

system design. The root locus in Fig. 5.7 shows that canceling the 
one pole of G(s) at s = -0.1 with a zero in a lead compensator, 
placing the compensator pole at s = -1, and using a dc gain of 1, 
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Figure 5.7 Root locus in the_s-plane for the antenna tracking control. 

that is, 

D(s) = lOs + 1 
05+1 

(5.15) 

provides closed-loop roots that satisfy the requirements for ( and Wn . 

Because this is a second-order system, this ensures that the overshoot 
limit of 16% will also be met. We have already seen that a D{s) with a 
dc gain of 1 produces Kv = 1, which will satisfy the steady-state error 
requirements. This controller results in a closed-loop block diagram 
as shown in Fig. 5.8. 

What should D{z) be? We could use any of the discrete equiv­
alent methods of Chapter 4. Due to its simplicity of use, we choose 

lOs + I 
s + I s(IOs+ I) 

8 

Figure 5.8 Closed-loop block diagram of the antenna control. 
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to illustrate the zero-pole mapping technique. First, we must select 
the sampling rate ws' We have designed the system to have Wn = 1 
rad/sec or 0.16 Hz. A safe sample rate, if plenty of computer power is 
available, is a factor of 20 or more times the closed-loop bandwidth 
of the system. 2 For this second-order case, the bandwidth is approx­
imately equal to the natural frequency, and therefore a conservative 
sample rate would be 3 Hz or higher. We initially choose a very safe 
Ws = 5 Hz, that is, T = 0.2 sec. 

The compensation, D(s), has two first-order factors (5.15); the 
zero is at s = -0.1, and the pole is at s = -1. The pole-zero mapping 
technique requires that each singularity is mapped according to z = 
esT; therefore, where D (z) is of the form 

there will be a zero at 

D(z) = K z - Zl , 
z - Z2 

Zl = e( -0.1)(0.2) = 0.9802, 

a pole at 

Z2 = e( -1)(0.2) = 0.8187, 

and because the dc gain of D(z) and D(s) must be identical, we have 
that 

de gain = lim D(z) = lim D(s) = 1 
z->l s->O 

Therefore we have 

= K 1 - 0.9802 . 
1- 0.8187 

K = 9.15, 

and the design of the discrete compensation is 

D(z) :::::: 9.15 z - 0.9802 . 
z - 0.8187 

2Selection of sampling rates is discussed with greater detail in Chapter 10. 

(5.16) 

(5.17) 



5.3 DESIGN USING EMUtATION 177 

This is converted into a difference equation for implementation into 
a computer using the ideas developed in Chapter 2. Specifically, we 
first multiply top and bottom by z-1 to obtain 

D(z) = u(z) = 9.15 1 - 0.9802z-
1 

, 

e(z) 1 - 0.8187z-1 

which can be restated as 

u(z)(l - 0.8187 Z-I) = 9.15 e(z)(l - 0.9802 z-I). 

The z-transform expression above is converted to the difference equa­
tion form by noting that z-1 represents a I-cycle delay. Thus 

u(k) = 0.8187u(k - 1) + 9.15 (e(k) ~ 0.9802e(k -1)). 

This equation can be directly evaluated by a computer provided that 
one past value of the control outPyt and the error input have been 
saved. The actual code to implement the equation in a control com­
puter might look something like that described in Table 5.1. Note 
that the calculation of u' in the table is coded so as to minimize the 
time between sample and output. Generally, one performs all the .cal­
culations that do not depend on that cyCle's sample before the actual 
sample so as to minimize the delay. More details on implementation 
are contained in Chapter 12. 

A description of a digital controller that appears to satisfy the 
specifications for the antenna is now complete. The designer has 
three options at this point. First, the controller could be implemented 
in a control computer, connected to the antenna system, turned on, 
and its performance observed to verify whether it really meets the 
desired specifications. A second option would be to perform a z-plalle 
analysis of the entire system in order to theoretically deterrnine the 
effect of the approximation brought about by the discretization of 
the continuous D(s). A third option would be to simulate the entire 
system (controller plus antenna) in a computer and to observe the 
computed response of the system. 

Let's proceed with the second and third options. To analyze the 
behavior of this compensation, we must determine the z-transform of 
the continuous plant (Fig. 5.1) preceded by a zero-order hold (ZOH) 
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Table 5.1 Real-time controller implementation. 

l. Initialize. 

2. Uold = 0 
3. u' = 0 
4. eold = 0 
5. Start control loop. 

6. Sample AID converter to obtain y (=y(k)) . 

7. Sample AID converter to obtain r (=r(k)). 

8. e=y-r 
9. U = u' + 9.15 e 

10. Send U to D I A converter. 

1l. Uold = U 

12. eold = e 

13. u' = 0.8187 Uold - ( 8.969 ) eold 

14. Wait for end of sample period, T sec. 

15. Go to 5. 

by using (5.5). Applying (5.5) to the G(s) in (5.2), we obtain 

z-l { a } 
G(z) = - Z 2( ) ' 

Z S S + a 
(5 .18) 

which is 

z-l {1 1 1 1 } G(z) = - Z - - - + - - . 
Z 82 as a s + a 

Using the tables in Appendix B, we find 

G(z) = z - 1 { Tz _ z + ~ z } 
z (z - 1)2 a(z - 1) a z - e-aT 

Az+B 
- ~--~~--~~ 

a(z - l)(z - e-aT )' 

A = e-aT + aT - 1, B = 1 - e-aT - aTe-aT. 
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For this example, T = 0.2 and a = 0.1 (see X-C2D in Table E.1), 
and this evaluates to 

z + 0.9934 
G(z) = 0.00199 (z _ l)(z - 0.9802) (5.19) 

The z-plane roots of a system with a digital controller are found 
by solving the closed-loop characteristic equation, 

1 + D(z) G(z) = O. 

For the antenna system, this becomes 

1 9 15 (z - 0.9802) (0.00199)(z + 0.9934) - 0 
+. (z - 0.8187) (z - l)(z - 0.9802) - , 

which has roots at (see RLOCUS in Table E.1) 

z = 0.900 ± jO.162. 

These roots can be evaluated in terms of the corresponding ( and 
Wn by using Fig. 5.6, or they could be converted back to the s-plane 
using the inverse of z = esT, 

1 
s = Tln(z). 

This calculation shows that the system has equivalent s-plane roots3 

at 

s = -0.446 ± jO.891, 

which indicates that the specified values have been modified by the 
approximations in the discrete equivalent to 

( = 0.447 (from ( = 0.5), 

ts = 10.3 sec (from 10 sec), 

overshoot = 20.8 % (from 16%), 

3The 'equivalence is exact only for root locations; the time response and frequency 
response will not match exactly. 
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Figure 5.9 Step response of the 5-Hz controller (5.17). 

20 

which are only slightly degraded. Furthermore, the simulated output 
of the system represented by D(z) and G(z) is shown in Fig. 5.9, 
and it confirms that the controller will perform as indicated by the 
calculations above. This simulation was carried out using the linear, 
discrete model of the system; however, simulations are often embel­
lished with the important nonlinearities and computation delays in 
the system in order to assess their effect in addition to the effect of 
the discretization approximations. 

Sampling at a rate that is over 20 tirp.es faster than the band­
width is a good, safe rule of thumb; however, it is sometimes neces­
sary to sample more slowly to minimize the task's demand on the 
computer. If sampling is done more slowly, the quality of the dy­
namic response goes down somewhat because of the increased delay 
of T /2 added by the ZOH, and random disturbances have a greater 
influence on the system. Furthermore, when using the emulation de­
sign method, the approximations from the discrete equivalent can 
produce substantial deviations from the desired control performance 
and could even destabilize an otherwise stable system. We will see 
in Section 5.4 how to fix the performance degradation from the em­
ulation design method when used at sample rates less than 20. times 
the bandwidth. 
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As an illustration, let's repeat the antenna design with a sample 
rate of 1 Hz GT = 1 sec), that is, where the sample rate is approxi­
mately 6 times the bandwidth. 

Repeating the calculations in (5.16) with T = 1 sec, we obtain 

D(z) = 6.64 z - 0.9048 . 
z - 0.3679 

. (5.20) 

Furthermore, repeating the calculations in (5.18) with T = 1 sec 
results in 

G(z) = 0.0484 z + 0.9672 . 
(z - l)(z - 0.9048) 

(5.21) 

Combining (5.20) and (5.21), we find that the closed-loop roots are at 

z = 0.523 ± jO.636, 

s = -0.194 ± jO.883, 

which indicates that the system should have 

( = 0.21 instead of the desired ( = 0.5, 

ts = 23.7 sec instead of 10 sec, 

overshoot = 52% instead of 16%. (5.22) 

A plot of the step response of the resulting system, (5.20) and (5.21), 
is shown in Fig. 5.10 and generally verifies the degradation predicted 
by the discrete analysis in (5.22). 

The response in Fig. 5.10 and the analysis both show a degra­
dation of the overshoot from 16% to about 50%, which corresponds 
to a damping ratio ' decrease from ( = 0.5 to ( = 0.2. Clearly the 
accUracy of the approximation is not ' adequate in this case. And in 
general~ the emulation design method will 'not yield accurate results 
for sample rates slower thari 20 times the bandwidth. However, as 
we shall See in' the next s'ection, the emulation method can be used 
with slower sample rates to determine an initial compensation, which 
is then "patched up" to obtain good response using z-plane design 
methods. 

The explanation of the performance degradation shown in the example 
lies in the fact that even if D{z) generates nearly the same sample values 
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Figure 5.10 Step response of the I-Hz controller (5.20). 

as D (S ), the zero-order hold reconstruction of u is only an approximation 
to the continuous u assumed in the design of D(s). In fact, Fig. 1.3 shows 
that the u from the ZOH is at best an approximation to a delayed version of 
u(t), delayed about T /2 sec. A time delay is well known to produce phase 
lag and generally leads to a less stable design if not taken properly into 
account .4 The effect of the ZOH lag is sometimes anticipated when doing 
the original s-plane design, thus causing extra lead to be pl~ced in the D(s)j 
therefore, the discretization simply degrades the results back to t,he point 
that the designer originally intended. 

Although the simple second-order system described in this section can 
be designed by hand calculations, design of more complex systems requires 
the availability of computer-aided design tools. In fact, when sampling at 
20 times bandwidth or more, we saw from the example in (5.16) that the 
calculations need to be carried out to four-place accuracy so as to retain two­
place accuracy in the final digital controller. The reason for this sensitivity is 
that derivative information is being obtained by differencing two sequential 

4 At Wn = 1 and T = 1 sec, a delay of T /2 introduces a phase lag of 1/2 rad, or about 
30°. Because ( = 0.5 corresponds to a phase margin (see Section 5.5) of about 50°, 
the delay reduces that to a phase margin of 20° corresponding to ( = 0.2, which 
generally agrees with (5.22) and the step respOllile of Fig. 5.10. 
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values that become almost identical for fast sampling. Therefore, even the 
second-order case with a fairly fast sample rate is very tedious without 
computer-based design tools. The standard routines that exist in most CAD 
packages that would aid in the calculations for this section and/or would 
generally be useful in design are listed below with generic names referring to 
entries in Table E.l that give the specific names in several CAD packages. 

1. RLOCUS: A program to compute the root locus of a closed-loop system 
given the open-loop transfer function. The routine is equally applicable 
to s-plane and z-plane system descriptions; however, when working in 
the z-plane, it is useful to provide a square aspect ratio and to include the 
unit circle, features that have been incorporated in the routines under 
ZLOCUS in Table E.l. 

2. X-C2D: A program to convert a continuous system preceded by a ZOH 
to a discrete system. 

3. EQUIVNT: A program to determine the various discrete equivalents, 
(bilinear, zero-pole mapping, etc.). 

4. SIMULATE: A program to compute the response of a discrete system 
to impulses, steps, or initial conditions. 

5.4 z-PLANE DESIGN USING ROOT LOCUS 

The second method of design is to determine the controller directly in the 
z-plane. At the outset, the plant model is transformed to a discrete sys­
tem using (5.5), and the design iterations to achieve the desired system 
specifications are carried out usif1,g z-plane analysis tools. By carrying out 
the digitization on the plant model instead of on the D (s) as was done for 
the emulation design method, the approximate nature of the process can 
be eliminated. This is so because the actual plant must be preceded by a 
hold (usually a ZOH) and, therefore, has an exact discrete equivalent that 
includes the lagging effect of the hold. There is no exact equivalent for a D( s) 
because its continuous response is dependent on the input signal between 
sample instances as well as at sample instances. Each discrete equivalent ap­
proximation technique is essentially an assumption on what the input signal 
is doing between the samples, and no one assumption can ever anticipate all 
types of input signals. The impact of these ideas is that a D(z) found using 
discrete design methods will yield performance when implemented which is 
very close to the desired specifications for fast or slow sample rates. 
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To demonstrate the z-plane design method, we will initially employ the 
root-locus design tool. In subsequent sections and chapters, we will demon­
strate z-plane design using frequency-response, direct-design, state-space, 
and optimal-control methods. 

The root locus is the locus of points where roots of a characteristic equa­
tion can be found as some real parameter varies from zero to large values.5 

From Fig. 5.2 and block-diagram analysis, the characteristic equation of the 
single-loop system is 

11 + D(z)G(z) = 0· 1 (5.23) 

The significant thing about (5.23) is that this is exactly the same equa­
tion as that found for the s-plane root locus. The implication is that the 
mechanics of drawing the root loci are exactly the same in the z-plane as 
in the s-plane; that is, the rules for the real axis, asymptote construction, 
and arrival/ departure angles are all unchanged from those developed for the 
s-plane. The difference lies in the interpretation of the results because the 
pole locations rriean different things when we come to interpret the system 
stability and dynamic response. 

Example 5.4: Suppos w design the antenna system for the slow 
sampling cas with T = 1 s . The exact discrete model of the plant 
plus hold is given by th G(z) in (5.21). If the controller consisted 
simply of a proportional gain [ u = K (Bll - B)], the locus of roots 
versus K can be found by solving the characteristic equation 

1 + 0.0484 K z + 0.9672 = 0 
(z - l)(z - 0.9048) 

for many values of K. The result is shown in Fig. 5.11 as the dashed 
arc marked (a). From study of the root locus we should remember 
that this locus, with two poles and one zero, is a circle centered aL 
the zero (z = ~0.9672) and breaking away from the real axis between 
the two real poles at the point where K versusz is a maximum for 
real z (see Problem 5.3). Here it is almost halfway, a bit closer to 
0.9048 than 1.0. 

5Sometimes we are interested in negative parameter values and look at root loci for 
the parameter in the entire range -00 :::; K < 00. The loci for positive gain ·are the 
most common. 
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Figure 5.11 Root loci for antenna design: (a) uncompensated system; (b) locus 
for D(z) with poles and zeros of (5.20). 

From the root locus of the uncompensated system (Fig. 5.1la) 
it is clear that some dynamic compensation is required if we are to 
get satisfactory response from this system. The radius of the roots 
never gets less than 0.95, preventing the ts specification from being 
met; and the system goes unstable at K rv 19 [where Kv = 0.92, as 
can be verified by using (5.8)], which means that there is no stable 
value of gain that meets the ste(!.dy-state error specification. 

If we cancel the plant pole at 0.9048 with a zero and add a 
pole' at 0.3679, we are using the compensation of (5.20). The root 
locus for this versus the gain K [K was equal to 6.64 in (5.20)] is 
also sketched in Fig. 5.1l as the solid curve (b). The point where 
K =6.64 is marked by a triangle, and we can see that a damping 
ratio Of about 0.2 i to be expected, as we ,have previously seen from 
(5.22) and the step response of Fig. 5.10. This point, however, does 
have-the specified value of Kv = 1 because this criterion was used 
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in arriving at (5.20). The locus shows that increasing the gain, K, 
would lower the damping ratio still further. Better damping could 
be achieved by decreasing the gain, but then the criterion of steady­
state error would be violated. It is therefore clear that this choice of 
compensation pole and zero cannot meet the specifications. 

A better choice of compensation can be expected if we transform 
the specifications into the z-plane and select the compensation so 
that the closed loop roots meet those values. The original specifica­
tions were Kv 2: 1, ts ~ 10 sec, and overshoot less than 16%, which 
translated into ( 2: 0.5. In the s-plane, these specifications would be 
met if Kv 2: 1, the roots were to the left of the line Re( s) = -0.5 
rad/sec and to the left of the ( = 0.5 lines (300 from vertical). These 
specifications were met with Kv = 1 and root locations at 

s = -0.5 ± jO.867. 

A guide for arriving at acceptable compensation in the z-plane design 
is to transform these root locations to the z-plane using z = esT. This 
yields 

z = 0.392 ± j0.462. 

One could also transform the specifications directly to the z-plane as 
was done in Fig. 5.6. This approach leads us to conclude that the ts 
specification requires that the roots be inside the radius r = e-O.5 = 
0.61 and the overshoot requires that the roots are inside the ( = 0.5 
spiral. The requirement that Kv 2: 1 applies in either plane but is 
computed by (5.8) for the z-plane. , 

It is typically advantageous to use the design obtained using 
emulation and to modify it using discrete design methods so that 
it is acceptable. The problem with the emulation-based design is 
that the damping is too low at the mandated gain, a situation that 
is typically remedied by adding more "lead" in the compensation. 
More lead is obtained in the s-plane by increasing the separation 
between the compensation's pole and zero; and the same holds true 
in the z-plane. Therefore, for a first try, let's keep the zero where it is 
( canceling the plant pole) and move the compensation pole to the left 
until the roots and Kv are acceptable. After a few trials, we find that 
there is no pole location that satisfies all the requirements! Although 
moving the pole to the left -or j("'" +e:o~J.l·-produce acceptable z­
plane pole locations, the gain Kv is not sufficiently high to meetfhe 
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criterion for steady-state error. The only way to raise Kv and to meet 
the requirements for damping and settling time is to move the zero 
to the left also. 

After some trial and error, we see that 

D(z) = 6 z - 0.80 
z - 0.05 

(5.24) 

meets the required z-plane constraints for the complex roots and has 
a Kv = 1.26. The root locus for (5.24) is shown in Fig. 5.12(a), and 
the roots corresponding to K = 6 are marked by squares. The fact 
that all requirements seem to be met is encouraging, but there is an 
additional real root at z = 0.74 and a zero at z = 0.8, which may 
degrade the actual response from that expected if it were a second­
order system. The actual time history is shown in Fig. 5.12(b). It 
shows that the overshoot is 29% and the settling time is 15 sec. 
Therefore, further iteration is required to improve the damping and 
to prevent the real root from slowing down the response. 

A compensation that achieves the desired result is 

D(z) = 13 z - 0.88. 
z+0.5 

(5.25) 

The damping and radius of the complex roots substantially exceed 
the specified limits, and Kv = 1.04. Although the real root is slower 
than the previous design, it is very close to a zero that attenuates 
its contribution to the response. The root locus for all K's is shown 
in Fig. 5.13(a) and the time response for K = 13 in Fig. 5.13(b). 

Note that the pole of (5.25) is on the negative real z-plane axis. In 
general, placement of poles on the negative real axis should be done 
with some caution. In this case, however, no adverse effects resulted 
because all roots were in well damped locations. As an example of 
what could happen, consider the compensation 

D(z) = 9 (z - 0.8) . 
(z + 0.8) 

(5.26) 

Its root locus versus K and step response are shown in Fig. 5.14. 
All roots are real with one root at z = -0.59. But this negative 
real axis root has ( = 0.2 and represents a damped sinusoid with 
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frequency of ws /2. The output has very low overshoot, it comes very 
close to meeting the settling time specification, and its Kv = 1; 
however, the control, u, has large oscillations with a damping and 
frequency consistent with the negative real root. This indicates that 
there are "hidden oscillations" or "intersample ripple" in the output 
that are only apparent by computing the continuous plant output 
between sample points as is done in Fig. 5.14. The computation of 
the intersample behavior was carried out by computing it at a much 
higher sample rate than the digital controller, taking care that the 
control value was constant throughout the controller sample period. 
(see OUTPUT in Table E.1). Note that, if only the output at the 
sample points had been determined, the system would appear to 
have very good response. Furthermore, this design uses much more 
control effort than that of Fig. 5.13 although, on the surface, its 
sampled output appears to meet the specifications. So we see that 
a compensation pole in a lightly damped location on the negative 
real axis could lead to a poorly damped system root and undesirable 
performance. -

In the design examples to this point, the computed output time histories 
have assumed that the control, u(k), was available from the computer at the 
sample instant. However, in a real system this is not precisely true. In the 
control implementation example in Table 5.1, we see that some time must 
pass between the sample of y(k) and the output of u(k) for the computer to 
calculate the value of u( k). This time delay is called latency and usually can 
be kept to a small fraction of the sample period with good programming and 
computer design. Its effect on performance can be evaluated precisely using 
the transform analysis of Section 2.4.2, the state-space analysis of Section 
2.4.4, or frequency response. However, it is easier and quicker to evaluate 
the effect of a full-cycle delay using root locus; assuming a potential delay 
of one full cycle bounds the possible effects of a partial cycle of latency. 
Furthermore, in computers not specifically designed for real-time control, 
one full cycle of delay between the sampling and the output is sometimes 
the case. 

Because a one-cycle delay has a z-transform of z-l, the effect of a full­
cycle delay can be analyzed by adding z-l to the numerator of the controller 
representation. This will result in an additional pole at the origin of the z­
plane. If there is a delay of two cycles, two poles will be added to the z-plane 
origin, and so on. 
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Example 5.5: To get some idea of the effect of delays, let's add 
one cycle delay to the compensation of (5.25). The new controller 
representation is 

D(z) = 13 z - 0.88 . 
z(z +0.5) 

(5.27) 

It results in the root locus and time response in Fig. 5.15 , will h 
are both substantially changed from the same controller with ut the 
delay in Fig. 5.13. The only difference is the new pole at z = O. Th 
severity of the one-cy Ie delay is due to the fact that this controller 
is operating at a very slow sample rate (six times the 10 ed loop 
bandwidth). In fact this sensitivity to delays is one of many r as ns 
why one would prefer to avoid sampling at this slow a rate becaus 
a one-cycle delay is sometimes a feature of a control computer. 

5.5 FREQUENCY-RESPONSE METHODS 
WITH THE z-TRANSFORM 

The frequency-response methods for control-system design were developed 
from the original work of Bode (1945) on feedback-amplifier techniques. 

Their attractivenesl:! for design depends on several ideas. 

1. The gain and phase curves can be easily plotted by hand. 

2. Nyquist's stability criterion can be applied, and 9-ynamiC response spec­
ifications can be readily interpreted in terms of gain and phase margins, 
which are easily seen on the plot of log; gain and phase versus log fre­
quency. 

3. The system error constants, mainly Kp or K v , can be read directly from 
the low-frequency asymptote Of the gain plot. 

4. The corrections. to· the gain and phase curves (and thus the gain and 
phase margins) introduced 'by a trial pole or zero of a compensator can 
be quickly and easily computed, using the gain curve alone. 

5. The effect of pole, zero, or gain changes of a compensator on the speed 
of response (Le., the crosSover frequeIlcy) can be quickly and easily de­
tennined using the gain curve alone. 

We will briefly review these points here as they apply to continuous 
systems. However, the books by James, Nichols, and Phillips (1947), Clark 
(1962), Ogata (1970), and Franklin, Powell, and Emami-Naeini (1986) give 
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pedagogic treatments of the ideas, and they should be referred to for a 
more complete review. We will concentrate the discussion on illustrating the 
changes required for applying frequency-response design methods to discrete 
systems. Section 2.6 introduces the idea of the response of a discrete system 
to a sinusoidal input. The basic concepts are the same as for continuous sys­
tems, but the evaluation of the magnitude and phase of a transfer function, 
H(z), is accomplished by letting z take on values around the unit circle, 
z = eiwT, that is, 

magnitude = IH(z)leiwT 

phase = L H(z)leiwT • (5.28) 

These relationships make useless the hand-plotting procedures developed 
by Bode and his proof relating the phase to the magnitude curve on a 
log-log plot. The inability to use these ideas detracts from the ease with 
which a designer can predict the effect of pole and zero changes on the 
frequency response. Therefore, points 1, 4, and 5 above are less true for 
discrete frequency-response design using the z-transform than they are for 
continuous systems. With some care in the interpretations, points 2 and 3 
are essentially unchanged. All these points will be discussed further in this 
section as they pertain to design using the z-transform. 

The following section, Section 5.6, will discuss the use of frequency­
response methods using the w-tmnsform. The w-transform approach was 
developed so that the points above are almost as easy to use for discrete 
systems as they are for continuous ones. Therefore, in practice, frequency­
response design of systems using a discrete model is often carried out using 
the w-transform; however, the need to replace the z-plane with the w-plane 
is less obvious in today's environment, where good software tools are uni­
versally available to perform the plotting for the designer. 

5.5.1 Gain and Phase Plotting 

For continuous systems, one can use Bode's hand-plotting techniques to 
generate plots of amplitude and phase versus frequency for the open-loop 
system. For discrete systems represented in the z-plane, the hand-plotting 
rules do not apply because z takes on values around the unit circle instead 
of the imaginary axis evaluation of s that is the basis for the hand:..plotting 
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Figure 5.16 Frequency response of (5.29): (a) magnitude and (b) phase. 

rules. The lack of hand-plotting capability has little impact if computer­
based tools are available to perform the task. However, it is important for 
the designer to retain the ability to perform hand plotting of continuous­
system frequency response because the geheral nature of the curves is similar 
to the discrete case, and the intuition gained can be used as a check. In fact, 
for fast sampling, the curves are virtually identical As the sample rate slows 
to four times the frequency of interest, the phase curve departs from that of 
an equivalent continuous system. 

Example 5.6: To illustrate the ideas above, Fig. 5.16 shows the 
magnitude and phase of 

G (s) _ ---:---1----.,­
- s(s + 1) 

(5.29a) 

for s taking on values from 0 ~ jw < 00. Also shown are the magni­
tude and phase of its ZOH discrete equivalent at three sample rates, 
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that is, 

(z + 0.9355) 
G(z) = 0.0187 (z _ 1)(z _ 0.8187) for T = 0.2 sec, 

(z + 0.718) 
G(z) = 0.368 (z _ 1)(z _ 0.368) for T = 1 sec, 

G(z) = 1.135 (z + 0.523) for T = 2 sec, 
(z - 1)(z - 0.135) 

with z taking on values at z = ejwT for 0 ~ wT ~ 7r. 

(5.29b) 

The G(s) magnitude. curve could be approximated by two straight­
line asymptotes intersecting at the breakpoint of w -..: 1 rad/sec. The 
phase hand-plotting rules would show quickly that the curve starts 
at -900 with a transition to -1800 at w = 1 rad/sec. No analogous 
methods exist for plotting the G(z) curves; they need to be done by 
computer (see FREQRESP in Table E.1). As should be expected, 
the discrete and continuous curves are very similar in nature because 
they all represent the response of the same physical process but at 
different sample rates. The fastest sampling case is extrem.eiy close to 
the continuous one, whereas the slower samplirig cases progressively 
degrade from it .. 

Note from Example 5.6 that the primary effect of sampling is to cause an 
additional phase lag, whereas the amplitude response is affected very little. 
Fig. 5.17 shows the phase difference, !::ic/>, between the continuous, case and 
the discrete cases. The approximation to the discrete phase lag of 

(5.30) 

is also shown and demonstrates the accuracy of the notion that the primary 
effect of the sampling in a digital controller is to delay the input by one 
half the sample period. The assumption is excellent for sample rates up to 
wT = 7r/2 which represents frequencies up to 1/4 the sample rate. Crossover 
frequencies (magnitude = 1) will almost always be slower than 1/4 the sam­
ple rate; therefore, one could obtain a good estimate of the phase margin of 
a sampled continuous system by simply subtracting the wT /2 factor ·from 
the phase of a continuous analysis. 
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Figure 5.17 Phase lag due to sampling. 

5.5.2 Nyquist Stability 

For continuous systems, the Nyquist criterion establishes stability by deter­
mining whether there are any singularities within a cont'ourthat encloses 
the entire right-hand side (unstable region) of the s-plane. This leads to the 
determination of whether there are any zeros of 

1 + D(s)G(s) = a (5.31) 

in the right hand plane, that is, whether the closed-loop system has any un­
stable roots. The entire contour evaluation is fixed by examining D(s)G(s) 
over s = jw for a :::; w < 00, which is also the frequency-response evaluation 
of the open-loop system. Figure 5.18(a) shows the full contour and the por­
tion of the contour for a :::; jw < 00. The specific statement of the Nyquist 
stability criterion for continuous systems is 

Z=N+P 

where 

Z = the number of unstable roots, 



198 CHAPTER 5 DESIGN USING TRANSFORM TECHNIQUES 

[mag 
s 

s-plane 

(a) 

[mag 
z 

z = ejO 

O<O<7T 
(portion used for 

open loop frequency 
response evaluation) 

O<s<joo 
(portion used for 
open loop frequency 
response evaluation) 

z-plane 

(b) 

Reals 

Real z 

Figure 5.18 Nyquist criterion evaluation contour: (a) continuous systems, (b) dis­
crete z-plane systems. 

N = the number of clockwise encirclements of the -1 point for a contour 

evaluation of D(s)G(s) with s taking on values as shown in Fig 5.18(a), 
and 

P = the number of unstable poles of D(s)G(s). 
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Therefore, for the predominant case of a stable open-loop system (P = 0) 
the closed-loop system.is stable if the contour evaluation of D(s)G(s) does 
not encircle the -1 point. For unstable open-loop systems, the closed-loop 
system is stable if the contour evaluation encircles the -1 point once for 
each unstable open-loop pole. The proof of this criterion relies on Cauchy's 
principle of the argument and is given in most textbooks on continuous 
control systems, including all those referred to above. For the discrete case, 
the ideas are identical. The only difference is that the contour enclosing the 
unstable region of the z-plane is the space outside the unit circle as shown 
in Fig. 5.18(b). Therefore the statement of the Nyquist stability criterion 
for discrete systems represented in the z-plane is 

Z=N+P 

where 

Z = the number of unstable roots, 

N = the number of clockwise encirclements of the -1 point for a contour 
evaluation of D(z)G(z) with z taking on values as shown in Fig 5.18(b), 
and 

P = the number of unstable poles of D(z)G(z). 

Example 5.7: To illustrate the criterion for the discrete case, let's 
evaluate the stability of the open-loop system 

1 
G(s) = s(s + 1) 

with proportional discrete feedback [D(z) = K] at a very slow sam­
ple rate of 1/2 Hz. The discrete representation (5.29b) results in 
the magnitude and phase shown in Fig. 5.16 for 0 ::; wT ::; 1r. The 
complete z-plane contour used in the evaluation of D(z)G(z) is la­
beled in Fig. 5.19(a) to facilitate comparison with the results of the 
evaluation (called the Nyquist plot) in Fig. 5.19(b). Note that the 
portion from a ~ b is directly from Fig. 5.16, whereas the section 
from b ~ c is the same information with the phase reflected about 
180°. All other portions were inferred from Fig. 5.19(a) based on the 
pole-zero configurations. Had the plot been generated by the evalua­
tion of KG(s) with s taking on values of the contour of Fig. 5.18(a), 
the differences would be that po~nt b would have had zero magni­
tude, and the segment de! gh located. along the positive real axis 
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of the discrete Nyquist plot would be absent. Because there are no 
-1 point encirclements, the system is stable for the K = 1 case as 
plotted. Note that the necessary information to determine stability 
is contained in the portion of the plot corresponding to the discrete 
frequency response of the open-loop system, that is, the portion from 
a --t b in Fig. 5.19(b). 

f g 

e 

(a) 

c 

f e d 

b g h 

a 

(b) 

Figure 5.19 (a) Contour in z-plane for Example 5.7; (b) Nyquist plot of Exam­
ple 5.7 using contour from (a). 
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The Nyquist plot shows the number of encirclements and thus the sta­
bility of the closed-loQP system. The encirclements can be determined by the 
portion of the plot representing the frequency:-response evaluation, specifi­
cally, whether it passes to the right or left of the -1 point. Gain and phase 
margins are defined so as to provide a two-dimensional measure of how close 
the Nyquist plot is to encircling the -1 point, and they are identical to the 
definitions developed for continuous systems. The Gain Margin (G M) is 
the inverse of the amplitude of D(z)G(z) when its phase is 1800 and is a 
measure of how much the gain of the system can increase before instability 
results. The Phase Margin (PM) is the difference between 1800 and the 
phase of D(z)G(z) when its amplitude is 1. It is a measure of how much 
additional phase lag or time delay can be tolerated before instability results 
because the phase of a system is highly related to these characteristics. 

Example 5.8: To illustrate gain and phase margins, let's consider 
the open-loop system 

G(s) _ 1 
- s(s + 1)2 

with proportional discrete feedback (D(z) = K) at a more typical 
sample rate of 5 Hz. Use of (5.5) results in 

G(z) = 0.0012 (z + 3.38)(z + 0.242) . 
(z - l)(z - 0.8187)2 

The portion of the Nyquist plot representing the frequency response 
in the vicinity of -1 is plotted in Fig. 5.20. Unlike the previous 
example with a very slow sample rate, the higher sample rate causes 
the magnitude to be essentially zero at wT = 7r, and hence the 
Nyquist plot goes to the origin. The plot is very similar to what 
wouid result for a continuous controller.6 Furthermore, just as in the 
continuous case, there are no -1 point encirclements if K = 1 as 
plotted. This would also be the case for any value of K ~ 1.8, that 
is, low enough so that the magnitude of the Nyquist plot is less than 
1 as it crosses the negative real axis. The system is then stable. For 
values of K 2: 1.8 the -1 point lies within the loop on the negative 
real axis, thus creating two encirclements (N = 2) and two unstable 
roots (Z = 2). 

6See Example II in Section 5.4 of Franklin, Powell, and Emami-Naeini (1986). 
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Figure 5.20 Gain and phase margins for Example 5.8. 

The G M and PM are indicated in the figure and show that the 
system is stable because the G M = 1.8 and PM = 18°. 

For continuous systems, it is often pointed out that the phase margin is 
related to the damping ratio, (, for a second-order system by the approxi­
mate relation, ( ~ PM/100. This relationship is examined in Fig. 5.21 for 
the continuous case and for discrete systems with two values of the sample 
rate. 

Figure 5.21 was generated by evaluating the damping ratio of the closed­
loop system that resulted when discrete proportional feedback was used with 
the open-loop system 

1 
G(s)--­

- s(s + 1) 

A z-transform analysis of this system resulted in z-plane roots that were 
then transformed back to the s-plane via the inverse of z = esT. The ( of 
the resulting s-plane roots are plotted in the figure. As the feedback gain 
was varied, the damping ratio and phase margin were "related as shown in 
Fig. 5.21. The actual sample rates used in the figure are 1 Hz and.5 Hz, 
which represent 6 and 30 times the open-loop system root at 1 rad/sec. 
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Figure 5.21 Damping ratio of a second· order system versus phase margin (PM) , 

The conclusion to be drawn from Fig. 5.21 is that the PM from a discrete 
z-plane frequency response analysis carries the same implications about the 
damping: ratio of the closed-loop system as it does for continuous systems~ 
For second-order systems without zeros, the relationship between ( and PM 
in the figure show~ that the approximation of ( ~ PM/100 is equally valid 
for continuous and discrete systems. For higher order systems, the damping 
of the individual modes needs to be determined using other methods, 

5.5.3 Low-Frequency Gains and Error Coefficients 

For continuous systems, we define the error constants as 

Kp = lim D(s)G(s) 
8 ....... 0 

and 

Kp = lim s D(s)G(s), 
8 ....... 0 .. 

which relate directly to the system errors for step inputs and ramp inputs, 
respectively. From a magnitude frequency-response plot, one can find the 
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value of Kp for Type 0 systems by simply determining the gain of the low­
frequency asymptote that has zero slope. For Type I systems, the gain versus 
frequency approaches a slope of -Ion the low-frequency asymptote. Kv is 
most easily determined by evaluating the gain on the low-frequency asymp­
tote at w = 1. If there are singularities around w = 1 or at lower frequencies, 
the magnitude plot won't be on the asymptote at w = 1, and it is necessary 
to extrapolate the asymptote to w = 1 and use that value as Kv' 

The error constants for discrete systems were established in Section 5.2 
and are 

Kp = lim D(z)G(z) 
z~l 

and 

Kv = lim (z - l)~(z)G(z). 
z~l z 

[5.8] 

For a Type,;b system, the procedure is identical to the continuous case. 
Since z = ejwT , z ~ 1 implies that wT ~ 0, and the magnitude frequency­
response plot· will show a constant value on the low-frequency asymptote 
which is .equal to Kp. 

For a Type I system, the procedure is again identical to the continuous 
case in that the magnitude of D(z)G(z) at w = 1 on the low-frequency 
asymptote is equal to Kv. This can be seen from (5.8) if we note that for 
wT ~ 0, ejwT ~ 1 + jwT. Therefore 

1· (z - 1) l' 1m = 1m w 
z~l Tz jw-.Q' 

thus establishing the fact that evaluation of the low-frequency asymptote of 
D(z)G(z) at w = 1 yields Kv ' This fact is most easily used if the frequency­
response magnitude is plotted versus w in units of rad/sec so that w = 1 
rad/sec is readily found. If the magnitude is plotted versus w in units of Hz 
or versus wT, one would need to perform a calculation to find the w = 1 
rad/sec point. However, the error constants could be calculated directly with 
good software tools; therefore the issues in their calculation are of passing 
interest only. But no matter how the constants are found, the fact remains for 
discrete and continuous frequency, response alike, the higher the magnitude 
curve at low frequency, the lower the steady-state errors. ' 
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Figure 5.22 Determination of Kv from frequency response. 

Example 5.9: Let us apply this to the determination of K v for tl! 

antenna system with the compensation given by (5.24). The open­
loop discrete transfer function is 

G(z)D(z) = (0.0484) z + 0.9672 (6) z - 0.80 , 
(z - l)(z - 0.9048) z - 0.05 

which yields the magnitude versus frequency in Fig. 5.22. Also note 
in the figure that the extension of the low-frequency asymptote at 
w = 1 has a magnitude of 1.26, thus indicating that Kv = 1.26. 

5.5.4 Compensator Design 

The amplitude and phase curves can be used to determine the stability 
margins based on the Nyquist stability criterion for either continuous or 
discrete ·systems. In the continuous case with minimum-phase transfer func­
tions, Bode showed that the phase is uniquely determined by an integral of 
the slope of the magnitude curve on a log-log plot. If the function is rational, 
these slopes are readily and adequately approximated by constants! Thus we 
have the result that the amplitude curve .must cross unity gain (zero log) at 



206 CHAPTER 5 DESIGN USING TRANSFORM TECHNIQUES 

a slope (in approximation) of -1 for a reasonable phase margin. The ability 
to predict stability from the amplitude curve alone is an important contrib­
utor to the ease at which designers can evaluate changes in compensator 
parameters. 

For discrete systems, Bode's relationship between the amplitude and 
phase curve is lost because z takes on values around the unit circle instead of 
s traversing the imaginary axis as in continuous systems. Fig. 5.16 illustrates 
the degree to which the relationship is lost and indicates that the error would 
be small for frequencies slower than 1/20th of the sample rate. However, it 
is typically necessary to determine both magnitude and phase for discrete 
z-plane systems for an accurate assessment of the stability. 

In carrying out designs, the z-plane poles and zeros on the real axis are 
located by their fractional location between zero and ±1. The equivalent idea 
in the z-plane for the "breakpoint" in Bode's hand-plotting rules is that the 
magnitude will change slope at a frequency when wT, the angular position 
on the unit circle in radians, has the same value as the fractional distance of 
the singularity on the real axis to z = + 1. For example, a pole at z = 0.9 will 
produce a slope change at wT = 0.1 rad. This equivalence is very accurate for 
low angular values (wT ::; 0.1 rad, i.e., sampling at more than 60 times the 
frequency) and is a reasonable approximation for angular values less than 
0.8 rad (i.e., sampling at more than 8 times the frequency). In order for a 
designer to arrive at trial compensations with potential for better PM, G M, 
steady-state errors, or crossover frequency, it is useful to understand how a 
pole or zero placement will affect the magnitude and phase curves. Because 
of the equivalence of the break-point concept between the continuous and 
discrete cases, this is accomplished for discrete systems using the ideas from 
the continuous Bode hand-plotting techniques, keeping in mind that their 
fidelity degrades for slow sampling. It is easiest to select compensator break 
points if the frequency-response magnitude and phase is plotted versus wT 
so that the correspondence between those curves and the location of the 
compensation parameters is retained. 

Example 5.10: Let us design the discrete controller for the an­
tenna system one more time. Using the slow sample rate of 1 Hz 
to illustrate the discrete aspects more clearly, we have the system 
transfer function 

G(z) = 0.0484 z + 0.9672 . 
(z - l)(z - 0.9048) 

. [5.21] 
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Figure 5.23 .Frequency response with Dl , D 2 , and D'J for Example 5.10. 

The magnitude and phase of the uncompensated system [G(z)] 
shown in Fig. 5.23 indicate that the system has a PM of 8° and 
crossover frequency (weo ) of 0.3 rad/sec. The specifications for the de­
sign are that the overshoot should be less than 16%, the settling time 
should be less than 10 sec, and Kv ~ 1. The 16% overshoot translates 
into ( ~ 0.5 from Fig. 5.4, which translates into the requirement that 
the PM be ~ 50° from Fig. 5.21. The specification for settling time 
translates via (5.13) into the requirement that W Il ~ 0.92. 

Because Kv of G(z) = 1, the compensated system will also have 
Kv = 1 provided the dc gain of D(z) = 1. In terms of the fre­
quency response, this means that the extension of the low-frequency­
magnitude asymptote passes through the value 1 at W = 1 for the 
uncompensated case (in Fig. 5.23), and the gain ofthis low-frequency 
asymptote should not decrease with any candidate compensation. To 
maintain an acceptable K v, we will evaluate only D (z) 's with a dc 
gain of 1. 

The uncompensated system's PM of 8° indicates poor damping, 
and the Weo of 0.3 rad/sec indicates that it will be too slow. Just 
as for continuous systems, WeD occurs apprbximately at the system 
bandwidth and dominant natural frequency; therefore, we should try 
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to change the design so that it has a Weo of about 0.9 rad/sec in order 
to meet the ts :S 10 sec. Once we find a compensation that meets 
the guidelines of PM = 50° and Weo = 0.9 rad/sec, we will need to 
check whether the ts and overshoot specifications are actually met, 
because the translations made are based on second-order systems 
with no zeros. 

Fig. 5.23 shows several attempts. The breakpoint of the first 
attempt [Dl (z) in Fig. 5.23] was at 0.15 rad/sec7 and did not in­
crease the slope of the magnitude curve at a low enough frequency 
to bring about the desired Weo. This was remedied in D2(z), where 
the breakpoint was lowered to 0.1 rad/sec (zero at z = 0.9) causing 
a Weo of 0.9 rad/sec, but the resulting PM of 40° was still lower 
than desired. By moving the pole out to z = -0.5 in D3(Z), we 
had very little effect on the Weo but achieved an increase in the PM 
to 50°. Because both goals are met, D3(Z) has a reasonable chance 
to meet the specifications; in fact, the calculation of a time history 
of the system response to a step input shows that the ttl is 7 sec, 
but, alas, the overshoot is 27%. The guidelines were not successful 
in meeting the specifications because the system is third order with a 
zero, whereas the rules were derived assuming a second-order system 
without a zero. 

The necessary revisions to our design guidelines are dear; we 
want more than a 50° PM and do not require a 0.9 rad/sec Weo. 

Fig. 5.24 shows the system frequency response using D3(Z) along 
with two revisions of D(z) that satisfy our revised goals. D4(Z) has 
a 60° PM and a 0.6 rad/sec wco , and D5(Z) has a 58° PM and a 
0.8 rad/sec Weo. The time history of the system response to a step 
using D5(Z) in Fig. 5.25 shows that it exactly meets the requirements 
for 16% overshoot and ttl = 10 sec. Furthermore, the design of the 
system was so that Kv = 1; therefore, all the requirements are met 
and the design is complete. 

To implement this compensation, 

D (z) = 12.8 z - 0.883 
5 z + 0.5 ' 

(5.32) 

7The zero at z = 0.85 translates into a 0.15 rad/sec breakpoint only because the 
sample period, T, is 1 sec. For T = 0.1 sec, a zero at z = 0.85 would translate into 
a 1.5 rad/sec breakpoint, etc. 
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we can use the same technique when (5.17) was inverted, carrying 
out the process by inspection to arrive at 

u(k) = -0.5 u(k - 1) + 12.8 (e(k) - 0.883 e(k - 1)), 

which can be directly coded in the control computer. 

5.6 FREQUENCY RESPONSE METHODS 
WITH THE w-TRANSFORM 

(5.33) 

The discrete system w-transform was developed in order to retain many 
of the design features from continuous systems. The essential idea of the 
method is to transform the discrete model ofthe plant, G(z), by substituting 
a new variable, w, with the bilinear mapping 

(5.34) 

and to perform the c.ompensator design in this "w-plane." The resulting 
compensation is then converted back to the z-plane, and hence the required 
difference equation is easily obtained. Much of the flavor of continuous sys­
tem design is retained because the stability boundary in the w-plane is the 
imaginary axis, just as in the s-plane. It is interesting to note that the trans­
formation (5.34) is identical to that used for Tustin's filter approximation 
in Chapter 3, 

2 z-1 
s=---

T z+1' 
[3.8] 

except that in that case, it was used to convert rational functions of s into 
approximate but realizable functions of z. 

The transformation of the stability boundary between the z-plane and 
the w-plane can be seen by writing (5.34) as 

2 esT - 1 2 sT 
w = - = -tanh-

TesT + 1 T 2 

If s is pure imaginary (=jw) and therefore z = ejwT (on the unit circle), 
then 

1::,.. .2 wT 
w = JV = J - tan­

T 2 
(5.35) 
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and we see that while z goes around the unit circle, the w-plane frequency, 
v, stays real and goes' from 0 to 00. We chose the scale factor8 of 2/T in 
(5.34) to make sure that the error constant would come out correctly and 
so that w-plane transfer functions would approach those in the s-plane as T 
went to zero. 

The design process begins with the conversion of the continuous model, 
G(s), to a z-plane discrete model, G(z), using (5.5). We then transform to 
the w-plane using the inverse of (5.34), or 

1+ wT/2 z = ---'---
1 - wT/2 

(5.36) 

to obtain G(w).9 The design is then carried out with the G(w) as if the sys­
tem were continuous. The magnitude and phase of G(jv) are the magnitude 
and phase of G(z) as z takes on values around the unit circle; and because 
G(jv) is a rational function of v, we can apply all the standard, ~traight-line 
approximations to the log magnitude and phase curves. Nyquist's stability 
criterion applies to G(jv) in the w-plane just as it does to G(jw) in the 
s-plane because in both cases we are determining the number of zeros of (1 
+ G) in the right-hand plane (or unstable roots). Therefore, the gain and 
phase margins of classical Bode designs apply directly to G(jv). The result 
of the design will be a D( w) that achieves the desired PM, and so on; this 
D(w) is then converted to a D(z) using 5.34 to complete the process. 

Example 5.11: Consider again the antenna design used in the 
previous sections. Its discrete model, with T = 1 sec, is, from (5.21), 

z + 0.9672 
G(z) = 0.0484 (z _ l)(z - 0.9048) . [5.21 ] 

8This transformation is sometimes done without the 2/T scale factor, in which case 

the transformed frequency (~ v') differs from the real frequency, w, by v' = tan 
wT /2 and is essentially a frequency that is scaled to the sample rate; that is, v' = 1 
when w = ws /4. See Whitbeck and Hofmann (1978). 
9We use the same symbol, G, for three distinct functions, G(s), G(z), and G(w). 
The arguments s, z, and w identify the function as well as the variable. 
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This is transformed to the w-plane using (5.36) to yield 

G(w) = _ (w/120 + 1)(w/2 - 1) . 
. w(w/0.0999 + 1) 

(5.37) 

The algebra in computing G(w) from G(z) can be somewhat tedious; 
Appendix B contains a table of a few common transfer functions 
and a general formula for making the conversion. Design software 
packages also typically contain routines to perform this conversion. 
(See X-Z2W in Table E.l.) 

Note that the gain of G(w) is precisely the same as that of G(s); 
it is unity in both cases. This will always be true for a G(w) computed 
using the definition of w given in (5.34). The gain of 1 in (5.37) is the 
Kv of the uncompe!lsated discrete system, as the reader can verify 
using (5.8); and it also applies to the continuous system, as can be 
verified from (5.2). We also note that in (5.37) the denominator looks 
very similar to that of G (s) and that the denominators will be the 
same as T approaches zero. This would also have been true for any 
-zeros of G(w) that corresponded to zeros of G(s), but our example 
did not have any. The example also shDws the creation of a right­
hand-plane zero of G(w) at 2/T and the creation of a fast left-hand­
plane zero when compared to the original G(s). The two "created" 
zeros can be attributed to the sampling and hold operations and thus 
depend on the sample rate. They both become faster and thus less 
important to the design problem as the sample rate is increased. In 
general, one or both of these additional zeros usually occur. 

In our example, the most important feature added to G(s) in 
transforming to G(w) is the right-'hand-plane zero at w = 2 rad/sec 
(= 2 /T), which will introduce serious distortion as v approaches 2 
rad/sec. From (5.35) we see that this point corresponds to wT /2 = 
tan- 1(1) = 45° or wT = 90°. Because the limit offrequency occurs at 
w = ws /2 (wT = 180°), frequencies of interest can approach w = ws /4 
and will be affected by this zero. More significantly, the zero at 2 is 
in the right half of the plane so that Bode's gain-phase integral does 
not apply to this one term. We will need to be especially cautious as 
we get close to v -: 2. 

We want a compensation that will keep Kv = 1 and that will 
have a damping of about ( = 0.5. Using the rule of thumb that the 
phase margin (PM) f'V lOO( (see Fig. 5.21) suggests that the PM 
should he 50°. k plot of the magnitude of (5.37) is shown in Fig. 5.26 
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Figure 5.26 Magnitude and phase of G(uJ and D(w)G(w) , 

by the solid line and is set to give Kv = 1. The phase margin for the 
system without compensation is on the order of 10°, just as it was for 
the z-plane frequency-response design in Section. 5.5. Note that the 
zero at lJ = 2 contributes phase lag because it is in the right-hand 
plane. Let us try compensating by placing a zero on top_ of the pole 
at lJ = 0.0999. How about the compensation pole ... or do we need 
a pole? In designing continuous systems, we always include a pole 
to avoid noise amplification and to make them easier to build. A 
w-plane compensation with no pole yields a z~plane pole at z = -1, 
which leads to a marginally unstable compensation and an unstable 
closed-loop system in spite of a positive phase margin;10 therefore, 
to stay out of trouble, always use a zero and a pole together. 

Where should we place the pole? The crossover frequency will 
be at approximately lJ = 1, where the phase of the uncompensated 
system was -21° and the compensation zero added 84°; therefore 
the pole can cause a phase lag of up to 13° in meeting the desired 
50° phase margin. Placing the pole at lJ = 6 meets this requirement, 

lOThe resulting system has a higher-order numerator than denominator, and one 
must revert to Nyquist's -1 encirclement criterion to determine stability. 
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so our compensation is 

1 + w/0.0999 
(w) = 

1 +w/6 
(5.38) 

and the compensated loop gain and phase are the dashed curves in 
Fig. 5.26. Note that the phase in the vicinity of v = 10 corresponds 
to a magnitude slope of -3 rather than -1; thus compensating non­
minimum phase systems (as most w-plane designs are) based on 
magnitude alone is treacherous. 

Reversing the w-transformation, we now use (5.34) to convert 
the D(w) of (5.38) to 

D(z) = 15.8(z - 0.9048) . 
z+0.5 

A root locus of the system 

(5.39) 

DC = (15.8) (1 - 0.9048z-1 )(0.0484)(z-1 )(1 + 0.9672z-1) 
_ (1 + 0.5z-1 )(1 - z-l )(1 - 0.9048z-1) 

z + 0.9672 
= 0.758-----...,.­

(z - 1)(z + 0.5) 
(5.40) 

is the circle centered at -0.97 in Fig. 5.27(a). The closed-loop pole 
corresponding to the root locus gain of 0.758 is marked 6.. The re­
sulting roots do not have the desired damping of ( = 0.5. In fact, the 
damping is ( = 0.37. The step response is shown in Fig. 5.27(b). This 
breakdown in the phase-margin/damping rule of thumb can some­
times occur in discrete frequency-response design when the sampling 
is extremely slow or when there is an added pole or zero. In this par­
ticular design example, the sample rate is 3.4 times faster than the 
closed-loop root on the positive real z-plane axis and is slower than 
one would typically select. If one does sample very slowly, however, 
the rule of thumb that PM "" 100( is no longer valid. 

To further illustrate this point, Fig. 5.28 compares the damping 
of the example (5.40) with varying loop gains and thus phase mar­
gins. The numbers shown adjacent to the discrete curve indicate the 
ratio of the sample rate to the closed-loop root frequency. Although 
the curve is specialized for this example, it illustrates the danger in 
relying on the rule of thumb and indicates a necessity to actually 
check whether the specifications are met. 
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5.7 DIRECT DESIGN METHOD OF 

RAGAZZINI 

[Ragazzini and Franklin (1958)] 

Much of the style of the transform design techniques we have been discussing 
in this chapter grew out of the limitations of technology that was available 
for realization of the compensators with pneumatic components or electric 
networks and amplifiers. In particular, many constraints were imposed in 
order to assure the realization of electric compensator networks D( s) as 
networks consisting only of resistors and capacitors.ll In the digital com­
puter, such limitations on realization are, of course, not relevan~, and one 
can ignore these particular constraints. One design method that eliminates 
these constraints begins from the very direct point of view that we are given 
a plant (plus hold) discrete transfer function G(z), that we want to construct 
a desired transfer function, H(z), between Rand Y, and that we have the 
compu ter transfer function, D (z ), to do the job. The overall transfer function 
is given by the formula 

DG 
H(z) = 1 +DG' 

11 In the book by Truxal (1955), where much of this theory is collected at about 
the height of its first stage of development, a chapter is devoted to RC network 
synthesis. 
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from which we get the design formula 

1 H(z) 
D(z) = ~ 1 - H(z) . (5.41) 

From (5.41) we can see that this design calls for a D(z ) that will cancel 
the plant effects and that will add whatever is necessary to give the desired 
result. The problem is to discover and implement constraints on H(z) so 
that we do not ask for the impossible. 

First, let us consider the constraint of causality. From z-transform theory 
we know that if D(z) is causal, then as z --t 00, its transfer function is well 
behaved; it does not have a pole at infinity. Looking at (5.41), we see that 
if G (z) were to have a zero at infinity, then D (z) would have a pole there 
unless we request an H(z) that is such as to cancel it. Thus we have the 
constraint that for D (z) to be causal 

H(z) must have a zero at infinity of the same order 

as the zero of G(z) at infinity. (5.42) 

This requirement has an elementary interpretation in the time domain: G(z) 
has a zero at infinity because the pulse response of the plant has a delay of 
at least one sample time. If there is a transportation lag in the plant, then 
the delay can be several samples and G(z) can start with z-l. The causality 
requirement on H (z) is that the closed-loop system must have at least as 
long a delay as the plant has. 

Considerations of stability add a second constraint. The roots of the 
characteristic equation of the closed-loop system are the roots of the equation 

1 + D(z)G(z) = O. (5.43) 

We can express (5.43) as a polynomial if we identify D = c(z)/d(z) and 
G = b(z)/a(z) where a, b, c, and d are polynomials. Then the characteristic 
polynomial is ' 

ad + bc = O. (5.44) 

Now suppose there is a common factor in DG, as would result if D(z) were 
called upon to cancel a pole or zero of G(z). Let this factor be z - a and 
suppose it is a pole of G(z), so we can write a(z) = (z - a)a(z), and to 
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cancel it we have c(z) = (z - a)e(z). Then (5.44) becomes 

(z - a)a(z)d(z) + b(z)(z - a)e(z) = 0, 

(z - a)[ad + be] = O. (5.45) 

In other words-perhaps it was obvious from the start-a common factor 
remains a factor of the characteristic polynomial. If this factor is outside 
the unit circle, the system is unstable! How do we avoid such cancellation? 
Considering again (5.41), we see that if D (z) is not to cancel a pole of G (z) , 
then that factor of a(z) must also be a factor of 1 - H(z). Likewise, if D(z) 
is not to cancel a zero of G(z), such zeros must be factors of H(z). Thus we 
write the constraints: 12 

1 - H (z) must contain as zeros all the poles of G (z) 

that are outside the unit circle. 

H(z) must contain as zeros all the zeros ofG(z) 

that are outside the unit circle. (5.46) 

Consider finally the constraint of steady-state accuracy. Because H(z) 
is the overall transfer function, the error transform is given by 

E(z) = R(z)(1 - H(z)). (5.47) 

Thus if the system is to be Type I with velocity constant Kv, we must have 
zero steady-state error to a step and 1/ Kv error to a unit ramp. The first 
requirement is 

e(oo) = lim(z - 1) _1_ [1 - H(z)] = 0, 
z-;l Z - 1 

(5.48) 

which implies 

[H(I) = 1. [ (5.49) 

The velocity constant requirement is that 

Tz 1 
e(oo) = l~(z - 1) (z _ 1)2 [1 - H(z)] = Kv . (5.50) 

12Roots on the unit circle are also unstable by some definitions, and good practice 
indicates that we should not cancel singularities outsiae tile Ia:tliti'S~.Qe~.settling 
time. See Fig. 5.5 and the discussion associated with it. 
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From (5.47) we know that 1 - H(z) is zero at z = 1, so that to evaluate 
the limit in (5.50), it is necessary to use L'Hopital's rule with the result [see 
(5.11) and following] 

- T- = -I dH I 1 I 
dz z= l Kv . 

(5.51) 

An example will best illustrate the application of these constraints. Consider 
again the plant described by the transfer function (5.21) and suppose we 
ask for the same design that led to (5.15) as a continuous controller. The 
continuous closed-loop system has a characteristic equation 

S2 + S + 1 = O. 

With a sampling period T = 1 sec, this maps to the discrete characteristic 
equation 

Z2 - 0.7859z + 0.36788 = O. (5.52) 

Let us therefore ask for a design that is stable, has Kv = 1, and has poles 
at the roots of (5.52) plus, if necessary, additional poles at z = 0, where the 
transient is as short as possible. The form of H(z) is thus 

H(z) = bo + b1z-1 + b2z-2 + b3z-3 + ... 
, 1 - 0.7859z- 1 + 0.3679z-2 

(5.53) 

The causality design constraint, using (5.42) and (5.18), requires that 

H(z) Iz=oo = 0 

or 

bo = o. (5.54) 

Equations (5.46) add no constraints because G(z) has all poles and zeros 
inside the unit circle except for the single zero at 00, which is taken care of 
by (5.54). The steady-state error requirement leads to 

H(l) = 1 

01 + 52 + b3 + ... 
1- 0.7859 + 0.3679 

=1. (5.55) 
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Therefore 

b1 + b2 + b3 + ... = 0.5820 

and 

-T- - -dH 1 1 
dz z=1 - Kv . 

Because in this case both T and Kv are 1, we use (5.55) and the derivative 
with respect to z-1 to obtain 

1 = ;v = d~~1 IZ=1 
(0.5820)[b1 + 2b2 + 3b3 + ... ]- [0.5820][-0.7859 + 0.3679(2)] 

(0.5820) (0.5820) 

or 

b1 + 2b2 + 3b3 + ... - [-0.05014] = l. 

0.5820 
(5.56) 

Because we have only two equations to satisfy, we need only two unknowns 
and we can truncate H(z) at b2. The resulting equations are 

b1 + b2 = 0.5820, b1 + 2b2 = 0.5318, 

which have the solution 

b1 = 0.6321, b2 = -0.05014. 

Thus the final design gives an overall transfer function 

We shall also need 

H(z) = 0.6321z - 0.05014 . 
z2 - 0.7859z + 0.3679 

(z - l)(z - 0.4180) 
1 - H(z) = z2 _ 0.7859z + 0.3679· 

(5.57) 

(5.58) 

(5.59) 
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Figure 5.29 Step response of antenna system from direct design. 

We know that H(l) = 1 so that 1 - H(z) must have a zero at z = 1. Now, 
turning to the basic design formula, (5.41), we compute 

D(z) = (z - l)(z - 0.9048)(0.6321) (z - 0.07932) 
(0.04837)(z + 0.9672) (z - l)(z - 0.4180) 

= 1307 (z - 0.9048) (z - 0.07932) 
. (z + 0.9672) (z - 0.4180) . 

A plot of the step response of the resulting design is provided in Fig. 5.29 
and verifies that the response samples behave as specified by H (z). However, 
as can be seen also from the figure, large oscillations occur in the control 
that causes the system response to oscillate considerably between samples. 
You may question how this can be for a system response transfer function, 

Y(z) DG 
R(z) = H(z) = 1 +DG' 

that is shown by (5.58) to have only two well damped roots. The answer lies 
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in the fact that the control response is determined from 

U(z) D 
R(z) = 1 + DG 

which for this example is 

H(z) 
G(z) , 

U(z) 13.06 z - 0.0793 (z - 1)(z - 0.9048) 
R(z) z2 - 0.7859z + 0.3679 z + 0.9672 

There is a root at z = -0.9672!. This is the source of the oscillation in the 
control response, but it did not show up in the output response because it 
was exactly canceled by a zero. The control oscillation causes the "intersam­
pIe ripple" in the output response, and the designer should be alert to this 
if poorly behaved roots arise in the control response. An actual prediction 
of the output intersample ripple based on linear analysis was not possible 
with the z-transform method described so far; rather, one would need to 
apply the "modified z-transform," which is beyond the scope of this text. 
Alternatively, one can use a CAD simulation to find such oscillations quite 
easily, as was done here. To avoid this oscillation, we could introduce another 
term in H(z), b3Z-3, and require that H(z) be zero at z = -0.9672, so this 
zero of G(z) is not canceled by D(z). The result will be a simpler D(z) with 
a slightly more complicated H (z). However, rather than pursue this method 
further, we will wait until the more powerful method of pole assignment 
by state-variable analysis is developed in the next chapter, where computer 
algorithms are more readily provided. 

5.8 PID CONTROL 

Just as in continuous systems, there are three basic types of control: Propor­
tional, Integral, and Derivative, hence the name, PID. In the design exam­
ples so far, we have been using the discrete equivalent of lead compensation, 
which is essentially a combination of proportional and derivative control. Let 
us now review these three controls as they pertain to a discrete implementa­
tion. The term PID is widely used because there are commercially available 
modules that have knobs for the user to turn that set the values of each of 
the three control types. 
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5.8.1 Proportional Control 

A discrete implementation of proportional control is identical to continuous; 
that is, where the continuous is 

u(t) = Kpe(t) => D(s) = Kp, 

the discrete is 

where e(t) is the error signal as shown in Fig 5.2. 

5.8.2 Derivative Control 

For continuous systems, derivative or rate control has the form 

where TD is called the derivative time. Differentiation can be approximated 
in the discrete domain as the first difference, that is, 

u(k) = KpTD (e(k) - e(k - 1)) 
T 

In many designs, the compensation is a sum of proportional and deriva­
tive control (or PD control). In this case, we have 

or, equivalently, 

ID(Z)=K~I 
which is similar to the lead compensations that have been used in the designs 
in the previous sections. The difference is that the pole is at z = 0, whereas 
the pole has been placed at various locations along the ,z-plane real axis 
for the previous designs. In the continuous case, pure derivative control 
represents the ideal situation in that there is no destabilizing phase lag from 
the differentiation, or, equi,valently, the pole is at s = -00. This s-plane 
pole maps into z = 0 for discrete rate control; however, the z . 0 pole does 
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add some phase lag because of the necessity to wait for one cycle in order 
to compute the first difference. Any other stable pole location, whether on 
the positive or negative real axis, would also have some delay or phase lag 
associated with it for the same reason. 

5.8.3 Integral Control 

For continuous systems, we integrate the error to arrive at the control, 

u(t) = Kp it e(t)dt ::::} D(s) = Kp , 
T[ to T[s 

where T[ is called the integral, or reset time. The discrete equivalent is to 
sum all previous errors, yielding 

KT 
u(k) = u(k-1)+ ;[ e(k) ::::} 

Just as for continuous systems, the primary reason for integral control is to 
reduce or eliminate steady-state errors, but this typically occurs at the cost 
of reduced stability. 

5.8.4 PID Control 

Combining all the above yields the PID controller 

D(z) = Kp (1 + Tz + TD(Z - 1)) . 
T[(z - 1)Tz 

(5.61) 

This form of control law is able satisfactorily to meet the specifications for 
a large portion of control problems and is therefore packaged commercially 
and sold for general use. The user simply has to determine the best values 
of K p , TD, and T[. 

5.8.5 Ziegler-Nichols PID Tuning 

The parameters in the PID controller could be selected by any of the design 
methods previously discussed. However, these methods require a dynamic 
model of the process which is not always readily available. Ziegler-Nichols 
tuning is a method for picking the parameters based on fairly simple exper­
iments on the process and thus bypasses the need to determine a complete 
dynamic model. 
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Figure 5.30 Process open-loop step response. 

There are two methods. The first, called the transient-response method, 
requires that a step response of the open-loop system is obtain~d which looks 
~ome~hing like that in Fig. 5.30. The response is reduced to two parameters, 
the time delay, L, and the steepest slope, R, which are defined in the figure. 
In order to achieve a damping of about ( . 0.2, the parameters are selected 
according to those in Table 5.2. 

The second method is called the stability-limit method. The system is 
first controlled using proportional control only. The gain, K p , is slowly in­
creased until continuous oscillations result, at which point the gain and 
oscillation period are recorded and called Ku and Pu' The PID gains are 
then determlmid from Table 5.3. 

The rules are based on continuous systems and will apply to the discrete 
case for very fast sampling (more than 20 times the bandwidth) provided 
the designer uses the value of T in (5.61) that reflects the actual sample 
period being \.!.sed by the controller. For slower sampling, a response degra­
dation similar to that in Example 5'.3 should be expected, and additional 
rate control (higher TD) would likely be required to make up for the sampling 
lag. 

Table 5.2 Ziegler-Nichols tuning 
parameters using transient response. 

P 
PI 
PID 

l/RL. 
0.9/RL 
1.2/RL 

Tr 

3L 
2L 

TD 

0.5L 
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Table 5.3 Ziegler-Nichols tuning 
parameters using stability limit. 

Kp TJ TD 

P O. 5Ku 

PI O.45Ku Pu /1.2 
PID O.6Ku Pu /2 Pu /8 

Example 5.12: Let us apply integral control to the system con­
trolling temperature through mixing described in Appendix A. The 
transfer function is 

For the digital implementation, we assume a zero-order hold, sam­
pling period T = 1 sec, system time constant a = 1 sec, and a 1 ~ 
period delay (Td = 1.5 sec). The transfer function for this example 
was determined in (2.42) as 

Z + 0.6065 
G3(Z) = 0.3935 2( 0 9) . 

Z Z - .367 
(5.62) 

As it stands, this transfer function has unity gain to a constant 
control and will have a steady-state error to a constant command 
or disturbance. If we assume that such behavior in the steady state 
is unacceptable, we can correct the problem by including integral 
control by using (5.60) to arrive at the effective system transfer func­
tion of 

Z + 0.6065 
DG3 = 0.3935K ()( )' Z Z - 1 Z - 0.3679 

(5.63) 

where K = (KpT)/TI following (5.60). 
The root locus of this system versus K is sketched in Fig. 5.31(a) 

with the roots corresponding to K = 1 marked with a square 
and those corresponding to K = 0.3 marked with a triangle. The 
K = 0.3 roots have ( = 0.5 and, therefore, should have about a 
15% overshoot. Fig. 5.31(b) shows the step response, which verifies 
the overshoot and indicates that the system has a settling time of 
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Figure 5.31 Mixing-flow plant with pure discrete integral control: (a) root locus, 
(b) step response. 
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Figure 5.32 Mixing flow plant with lead compensation and discrete integral con­
trol: (a) root locus, (b) step response. 
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ts = 18 sec. A system with an open-loop time constant of 1 sec is 
capable of a much faster response than this; however, the delay will 
cause stability problems if we ask for too much. Let's simply add 
a lead compensation in order to investigate how to speed up the 
system. One that cancels the plant pole at z = 0.3679 and the plant 
zero at z = -0.6065 is 

D L = K z - 0.3679 
z + 0.6065 

With this addition, the complete compensation becomes 

D(z) = K z{z - 0.3679) . 
(z - 1){z + 0.6065) , 

and the system open-loop transfer function reduces to 

- 1 
DG3 {z) = 0.3935K ( )' z z-1 

whose root locus versus K is sketched in Fig. 5.32{a). The triangle 
marks the location of ( = 0.5, which occurs for K = 1 and yields a 
step response as shown in Fig. 5.32{b). Note that the overshoot has 
slightly improved and the settling time has been cut in half to 9 sec. 

In this example, the transfer function was available for design 
purposes; therefore, it was possible to determine the integral control 
using the design methods discussed in Section 5.4. Had we riot had a 
model, the Zeigler-Nichols method could have been applied to help 
determine the gains. 

5.9 SUMMARY 

In this chapter we have reviewed the philosophy and specifications of the 
design of control systems by transform techniques and discussed four such 
methods. First we developed the relations between the time-domain speci­
fications of overshoot, rise time, and settling time and poles in the z-plane. 
Using the theory and techniques of discrete equivalents, we then showed how 
a continuous design can be converted into a discrete design. This design pro­
cess was called emulation. With a sample. rate of six times the bandwidth, 
we found that the approximation was quite coarse and would require sub­
stantial adjustment to meet the design specifications. As a second design 
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approach, we discussed the root locus in the z-plane. We saw that the root 
locus is the same as for s-plane designs, but the relations to time-domain 
response must refer to the z-plane. Our third design method was based on 
frequency-response techniques. The process was carried out in the z-plane, 
where extensive reliance on a computer is required, and in the w-plane, where 
much of the experience from continuous design can be used more readily. 
Our final method was a direct transfer-function calculation wherein we found 
causality and stability constraints on an overall transfer function so that an 
acceptable compensator can be derived. Here we found that canceling poles 
near the unit circle can have undesirable effects. In the final section we 
presented a design by root locus methods for a plant which required the 
introduction of discrete integral control. 

PROBLEMS AND EXERCISES 
5.1 Use the z = e~T mapping function and prove that the curve of constant ( in 
s is a logarithmic spiral in z. 

5.2 Sketch the acceptable region in the s-plane for the specification on the antenna 
given before (5.15) and sketch the s-plane root locus corresponding to the controller 
of (5.15). 

5.3 Root locus review. The following root loci illustrate important features of the 
root locus technique. All are capable of being done by hand, and it is recommended 
that they be done that way in order to develop skills in verifying a computer's 
output. Once sketched roughly by hand, it is useful to fill in the details with a 
computer. 

a) The locus for 

is typical of the behavior near s = ° of a double integrator with lead 
compensation or a single integration with a lag network and one additional 
real pole. Sketch the locus for values of PI of 5, 9, and 20. Pay close 
attention to the real axis break-in and break-away points. 

b) The locus for 

1+K 1 
s(s + 1)((s + a)2 + 4) 

illustrates the possibility of complex multiple roots and shows the value 
of departure angles. Plot the locus for a = 0, -1, and -2. Be sure to note 
the departure angles from the complex poles in each case. 



PROBLEMS AND EXERCISES 231 

c) The locus for 

illustrates the use of complex zeros to compensate for the presence of 
complex poles due to vibration modes. Be sure to compute (estimate) the 
angles of departure and arrival. Sketch the loci for w = 1 and w = 3. 
Which case is unconditionally stable (stable for all positive K less than 
the design value)? 

d) For 

show that the locus is a circle of radius J P1P2 centered at the origin 
(location of the zero). Can this result be translated to the case of two 
poles and a zero on the negative real axis? 

5.4 Appendix A gives the transfer function of a satellite attitude contr~l as 

a) Sketch the root locus of this system as a function of K with unity feedback. 
What is the type of the uncompensated system? 

b) Add a lead network so that the dominant poles are at ( = 0.5 and () = 45°. 
Plot the closed-loop step response. 

5.5 Use Ragazzini's direct-design method to find a compensation for the satellite 
transfer function of Appendix A with T = 1.0 sec such that all the closed loop poles 
are at z = o. Sketch the root locus and the step response of the resulting design. 

5.6 Repeat the design of the antenna control system described in Examples 5.1 
through 5.4 but use a sample period of T = 0.1 sec. 

a) Use emulation with pole-zero mapping of (5.15). 
b) Use the z-plane root locus. 

5.1 Design the antenna control system with a sample period of T = 0.5 sec using 
emulation and check the resulting compensation with a z-plane analysis. 

a) Use the method as described in Section 5.3 
b) Augment the plant model with an approximation of the sampler consisting 

of 

2/T 
Hs(s) = S + 2/T' 

then design D(s) and find the discrete equivalent . 
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Figure 5.33 A steel ball suspended by means of an electromagnet. 

c) Compare the degradation of the damping ratio, (, due to sampling for 
both design methods. 

5.S For 

1 
G(s) - ..,-----­

- (s + 0.1)(8 + 3) 

being controlled with a digital controller using a sample period of T = 0.1 sec, 
design compensation using z-plane root locus that will respond to a step with a rise 
time of ~ 1 sec and an overshoot ~ 5%. What can be done to reduce the steady 
state error? 

5.9 It is possible to suspend a mass of magnetic material by means of an elec­
tromagnet whose current is controlled by the position of the mass [Woodson and 
Melcher (1968)J. A schematic of a possible setup is shown in Fig. 5.33. The equations 
of motion are 

mx = -mg + f(x, I), 

where the force on the ball due to the electromagnet is given by f(x, I). At equi­
librium, the magnet force balances the gravity force; suppose we call the current 
there 10 . If we write I = 10 + i and expand f about x = 0 and I = 10 , and if we 
neglect higher-order terms, we obtain 

Reasonable values are m = 0.02 kg, kl = 20 N/m, k2 = 0.4 NjA. 
a) Compute the transfer function from i to x and draw the (continuous) root 

locus for simple feedback i = -Kx. 
b) Let the sample period be 0.02 sec and compute the plant discrete transfer 

function when used with a zero-order hold. 
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Figure 5.34 An automotive cruise-control system. 

c) Design a digital control for the magnetic levitation to meet the specifica­
tions tr ~ 0.1 sec, ts ~ 0.4 sec, and overshoot ~ 20%. 

d) Plot a root locus of your design versus kl and discuss the possibility of 
balancing balls of various masses. 

e) Plot a step response of your design to an initial disturbance displacement 
on the ball and show both x and the control current i. If the sensor can 
measure x over a range of only ±~ cm, and if the amplifier can provide 
a current of only 1 A, what is the maximum displacement possible for 
control, neglecting the nonlinear terms in f(x, I)? 

5.10 Design -compensation using w-plane frequency-response methods for a 1/ s2 

plant (Appendix A.l) that yields a bandwidth of approximately 10 rad/sec. Pick 
two candidate sample rates, one where vT/2 at crossover is approximately 1.3, and 
one fairly fast sample rate yielding a vT /2 of approximately 0.2. Design each case 
to have the same phase margin (approximately 30°), then compare the damping of 
the equivalent s-plane roots resulting from the two designs. 

5.11 The transfer function for pure derivative control is 

where the pole. at z = 0 adds some destabilizing phase lag. It therefore seems that 
it would be advantageous to remove it, that is, to .use derivative control of the form 

. (z - 1) 
D(z) = KpTD T . 

Can this be done? Support your answer with the difference equation that would be 
required and discuss the requirements to implement it. 

5.12 For the automotive cruise-control system shown in Fig. 5.34, 
a} design a PD controller to achieve a tr of 5 sec with no overshoot, 
b} determine the speed error on a 3% grade (Le., Gr = 3 in Fig. 5.34), and 
c) design a PID controller to meet the same specifications as part (a) and 

that has no error on grades. 
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Figure 5.35 A disk drive tracker head. 

5.13 For the disk drive tracker head described in Fig. 5.35, design compensation 
for a 20 msec ts to a step input with overshoot ~ 20% and T = 1 msec. Use 

a) s-plane frequency-response design and emulation, 
b) z-plane frequency-response design, and 
c) w-plane frequency-response design. 

5.14 The tethered satellite system shown in Fig. 5.36 has a moveable tether at­
tachment point so that torques can be produced for attitude control. The block 
diagram of the system is shown in Fig. 5.37. Note that the integrator in the ac­
tuator block indicates that a constant-voltage command to the servo motor will 
produce a constant velocity of the attachment point. 

a) Is it possible to stabilize this system with () feedback to a PID controller? 
Support your answer. 

-.,.,--- Spacecraft 

I __ - Tether 

Figure 5.36 A tethered satellite system. 
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Figure 5.37 Block diagram for the tethered satellite system. 

b) Select what sensors would be most useful. 

o 

c) Design compensation for the system using the sensor(s) that you selected 
in part (b) so that it has a 2-sec rise time and 50° PM. 

5.15 The excavator shown in Fig. 5.38 has a sensor measuring the ,angle of the 
stick as part of a control system to control automatically the motion of the bucket 
through the earth. The sensed stick angle is to be used to determine the control 
signal to the hydraulic actuator moving the stick. The schematic diagram for this 
control system is shown in Fig 5.39, where G(s) is the system transfer function 

Srick 

Figure 5.38 An excavator with an automatic control system. 
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Figure 5.39 Schematic diagram for the control system of the excavator. 

given by: 

G s _ 1000 
( ) - s(s + 10)(s2 + 1.2s + 144)' 

and where the compensation is implemented in a control computer sampling at Is 
= 50 Hz and is of the form 

The oscillatory roots in G(s) arise from the compressibility of the hydraulic fluid 
(with some entrained air) and is often referred to as the oil-mass resonance. 

a) Show that the steady-state error, E (= ()r - ()), is 

E( CX)) = 1.44 
K 

when ()r is a unit ramp. 
b) Determine the highest K possible (i.e., at the stability boundary) for 

proportional control (Ka = Kv = 0). 
c) Determine the highest K possible (i.e., at the stability boundary) for PD 

(Ka = 0) control. 
c) Determine the highest K possible (i.e., at the stability boundary) for PD 

plus acceleration (Ka i= 0) control. 13 

5.16 For a system given by 

G(s) = --;-_a~ 
s(s + a) 

determine theconditio~s under which the Kv of the continuous system is approx­
imately equal to the Kv of the system preceded by a ZOH and represented by its 
discrete transfer function. 

13For further reading on damping the oil-mass resonance of hydraulic systems, see 
Viersma (1980). 



PROBLEMS AND EXERCISES 237 

5.17 Design a digital controller for 

1 
G ( 8) - --:-------::---:7 

- 8(8+0.4) 

preceded by a ZOH so that the response has a rise time of approximately 0.5 sec, 
overshoot < 25%, and zero steady-state error to a step command. [Hint: Cancel 
the plant pole at 8 = 0.4 with a compensator zero; a second-order closed loop 
system will result, making the transient response comparison between experiment 
and theory much easier.] 

a) Determine a D(z) using emulation with the pole-zero mapping technique. 
Do two designs, one for T = 100 msec and one for T = 250. 

b) Repeat part (a) using the z-plane root locus method. 
e) Simulate the closed-loop system response to a unit step with the D(z)'s 

obtained in parts (a) and (b). Use the discrete equivalent of the plant in 
your calculations. Compare the four digitally controlled responses with 
the original specifications. Explain any differences that you find. 


