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Today 1n Linear Systems...

Week

Date

Lecture Title

1

27-Feb|Introduction

1-Mar|Systems Overview

2

6-Mar|Signals & Signal Models

8-Mar|System Models

13-Mar|

Linear Dynamical Systems

15-Mar|

Sampling & Data Acquisition

20-MarTime Domain Analysis of Continuous Time Systems

22-Mar|

System Behaviour & Stability

27-Mar|

Signal Representation

29-Mar|

Holiday

10-Apr|Frequency Response

12-Aprjz-Transform

17-Apr|

Noise & Filtering

19-Apr|

/Analog Filters

24-Apr|

Discrete-Time Signals

26-AprDiscrete-Time Systems

1-May|

Digital Filters & IIR/FIR Systems

3-May|

Fourier Transform & DTFT

8-May|

Introduction to Digital Control

10-May|

Stability of Digital Systems

15-May

PID & Computer Control

17-May|

Applications in Industry

22-May|

State-Space

24-May

(Controllability & Observability

29-May|

State-Space: Made Clear

31-May

Summary and Course Review




</assessable>
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WARNING: NOT ASSESSABLE
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* Nothing beyond this point is on the exam.
* Do not pay attention.

* Do not attempt to learn.

What’s Assessable?

Week Date \ Lecture Title
27-FeblIntroduction
1-Mar|Systems Overview
2 6-MarSignals & Signal Models
8-Mar|System Models
3 13-Mar|Linear Dynamical Systems
15-Mar|Sampling & Data Acquisition
4 20-MarTime Domain Analysis of Continuous Time Systems
22-MarSystem Behaviour & Stability
5 27-Mar|Signal Representation
29-MarjHoliday
6 10-AprFrequency Response
12-Aprjz-Transform
7 17-AprNoise & Filtering
19-Apr/Analog Filters
8 24-AprDiscrete-Time Signals
26-Apr|Discrete-Time Systems
9 1-May|Digital Filters & IIR/FIR Systems
3-May|Fourier Transform & DTFT
10 8-May|Introduction to Digital Control
10-May|Stability of Digital Systems
1 15-May|PID & Computer Control
17-May|Applications in Industry




Announcements:

* Practice Final Posted: |
— You’re welcome © =
— While it’s final #3 (real, supp, & prac):

* It shares no questions with either the real or the supp.
— Exam Review Session: June 7,

=> It is harder than the real thing!
(v its primarily to practice the material not the timing)

* Problem Set 2 Grading:

— May 31 (& you get your grades during the semester)
— June 7 (More time, better feedback??)

Goals for the Week

Today:
» State-Space: Controllability & Observability

» State-Space: Solution of Differential Equations

» State-Space: Compensator Design

Friday:
* Everything!




ELEC 3004:
A Review

AKA ELEC 3004:
What do | need to
know about *.* ???




To Review:

Lecture 1 Sli

e9

Back to the Beginning

Systems
Signal Abstractions
Signals as Vectors / Systems as Maps

Linear Systems and Their Properties
LTI Systems

Autonomous Linear Dynamical Systems ¢

Convolution

FIR & IIR Systems
Frequency domain
Fourier Transform (CT)
Fourier Transform (DT)

Even and Odd Signals
Likelihood
Causality

Impulse Response
Root Locus

Bode Functions

Left-hand Plane

Frequency Response

Discrete Time
Continuous Time

Laplace Transformation
Feedback and Control
Additional Applications

Linear Functions

Linear Algebra Review
Least Squares

Least Squares Problems
Least Squares Applications

Matrix Decomposition and Linear
Algebra

Regularized Least Squares

Least-squares

Least-squares applications
Orthonormal sets of vectors
Eigenvectors and diagonalization

Linear dynamical systems with inputs
and outputs

d

Symmetric matrices, quadratic forms,
matrix norm, and SVD

Controllability and state transfer
Observability and state estimation

And that, of course,
Linear Systems are Cool! ©®

Review

* What do you think when you see?

yt+2y+3y=u

* System?

ODE?

* Linear Algebra?

* Joy?

» Excitement?
* Shock and Awe??

Linear algebra provides the tools/foundation for

working with (linear) differential equations.




Signals & Systems

Linear algebra provides the tools/foundation for
working with (linear) differential equations.

« Signals are vectors. Systems are matrices.

y = F'x + Gu

Linear Systems

ELEC 3004: Systems 31 May 2013 12



Linear Systems in 1-Slide

F(.. .):Tystem

Zignal Fd)() sigﬂalt)

* Signals Are Vectors

* Systems Are Matricies

Is 1t Useful?

Yes.

(For example ... Next Year — ELEC/METR 3800)

ELEC 3004: Systems 31 May 2013 14




It Can Rock Your Boat Gently Down The Stream:

IMU Deaduced Reckoning (Navigation)
: ® [dea: Integrate your motion (twice for
¥ = x and once for 8 = 0)
& Problem:
(DC) bias in accelerometer = drift
[ Solution:
==+ [IR Bandpass filter (0.1-10 Hz)

F—F - --F-—F-F-9-9

Frouany v
. A= [1.0000 -5.8235 14.1332 -18.2966 13.3259 -5.1772 0.8382];
B = [0.9155 -5.4933 13.7331 -18.3109 13.7331 -5.4933 0.9155];

o

It Can Rock Your Boat Gently Down The Stream:
IMU Deaduced Reckonlng (Navigation) [2]

8 Solution:
Raw Positian
= 1000 :
@ 0
2 0 *—*&LE——H_
= 5
i)
& -1000 ; , !
o a0 100 150
Time ()
Matlab Filtered Position
= 0021 :
= z
R T e e
& !
@
o 002 L L L
o a0 100 180
Time (s)
Customn Filtered Position
= 0021 :
o :
R e e
T 2
]
o -0.02 ! L !
i} a0 100 150
Time ()




Extra Material:
(For Fun!)

Poles are Eigenvalues

ELEC 3004: Systems

31 May 2013 17
Stability of a 2" order regulator
The Jacobian matrix is
0 1
A =
-1 -£ (0)

The linear behavior of the system in the close
neighborhood of the origin is described by

u = Ke + f(e)e X1 = X2

state equations let e = x; and é = X3 Xy ==X31 ~— £ (O)Xz

‘ *  AND, the characteristic equation is:

X1 = X2

. sls + £(0)]+ 1 =0

X2 =-Kx1 - f(x1) X2 with the eigenvalues

assume for simplicity that K = 1. ] s
0 = x3 Ao=- 5 £(0) + J% £2(0)-1
0 = —-x§ - £(x?)x! .1 g
Ag. F =g £(0) - llI‘-i £(0)-1




Various Types of Singularities (2" order systems)

Stable Unstable
Trajectory type Eigenvalues Trajectory fype Eigenvalues
T - | ot g~ i~y o
"
O a
Stable f Unstable foc
fw jw
_—‘ H + s e { } ]'
Stable node Unstable node
51 YN e
L —( 40—
N7
Vortex Soddle

Root Locus
Control Design Method

(See also Q10. Part F)

ELEC 3004: Systems 31 May 2013 20
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Root Locus Design: “Evan’s Method”
+ Imagine “the basic feedback system”:

o 09 S | Y () DG ;
- x5 1 o fGiis) e ¥ ey — ¥ A8) (8) G (s} __ DG
'{_J =] ]1_ . T = e ST 5 DG ) 14 DGH

-> Characteristic Equation: 1+ DGH =0
 Put the characteristic equation in Root Locus form:
1+K-L(s)=0

= If we define L(s) = %

» then a(s) + K -b(s) = 0and L(s) = _%

« Thus a Root Locus is a graph of all possible roots of
1+ K - L(s) = 0 and K as the variable parameter

- This is the solution to the roots of the closed-loop system characteristic equation
and thus the closed-loop poles of the system. The root-locus graph may be viewed
as a method for interring the dynamic properties of a system as K changes.

The Direct Method
of Digital Controls —

to be confused with
Controller Emulation
(e.g., Tustin’s Method)

ELEC 3004: Systems 31 May 2013 23
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Direct Design Method Of Ragazzini
(See also: FPW 5.7 pp.216-222)

Start with 3 Discrete Transfer Functions:
— G(2): TF! of a plant + a hold (e.g., from a ZOH)
— D(2): A controller TF to do the job (what we want here)
— H(2): The final desired TF between R (reference) and Y (output)

— Thus?:
DG
H(z) = 14+DG
1 H
9D(z) = EE

This calls for a D(z) that will cancel the plant effects and that will add whatever is
necessary to give the desired result. The problem is to discover and implement
constraints on H(z) so that we do not ask for the impossible.

— This implies that we need some constraints on both H(z) and D(z)

1: Transfer Function

2: Mental Quiz: What does 1+DG say about the sign of the feedback (positive or negative)?
That is, what is the characteristic equation for a system with positive feedback?

Direct Design Method Of Ragazzini [2]:
Design Constraints: I. Causality

» Remember/Recall an Interesting Point:
— From z-transform theory we know that if D(z) is causal,
then as z — oo its transfer function is well behaved
& it does not have a pole at infinity.

e D(2) = %% implies that if G(z) = 0 (at ),
then D(z) would have a pole (at «) unless H(z) cancels it.

H(z) must have a zero (at «) of the same order as G(z)’s Os (at )

- Which means: If there is a lag in the plant (G(z) starts with z)
then causality requires that the delay of H(z) is that the closed-loop
system must be at least as long a delay of the plant.

(Whoa! It might sound deep, but it’s rather intuitive ©)
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Direct Design Method Of Ragazzini [3]:
Design Constraints: II. Stability

* The characteristic equation and the closed loop roots:
1+D(2)G(2) =0

* Define?* D =§andG=§-) ad +bc =0

* Define z — a as a pole of G(z) and a common factor in DG that

represents D(z) cancelling a pole/zero of G(2).
Then this common factor remains a factor of the characteristic polynomial.

If this factor is outside the unit circle, then the system is unstable!

1-H(z) must contain as zeros
all the poles of G(z) that are outside the unit circle &
H(z) must contain as zeros
all the zeros of G(z) that are outside the unit circle

3: Note the switching of the “alphabetical-ness” of these two fractions

Direct Design Method Of Ragazzini [4]:
Design Constraints: III. Steady State Accuracy

* The error from H(z) is given by:

E(z) =R(z)(1-H(2)

If the system is “Type 17 (with a constant velocity/first derivative (K,,)
— Then*E5fP = 0and ES™™ =1/,

H(zjoz 1
&
dH(z) 1 B
—TS d(z) . = K_UH(Z) =1

4: E: steady-state error
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Direct Design Method Of Ragazzini [5]:
An Example
« Consider the plant: s2 + s +1 =10
With T=1 = z-Transform: z* + 0.786z + 0.368=0
* Let’s design this system such that
-K,=1

— Poles at the roots of the plant equation & additional poles as needed

-1 -2 =34...
-)H(z) — bo+b1z +bff +b3z _;—
1-0.7862"1+0.368 z
I.  Causality: H®)|—e = 0> by =0
II.  Stability: All poles/zeros of G(z) are in the unit circle
— except for by, which is taken care of by by = [Const] = 0

II. Tracking:
H(1) = by + by + by +-- =1 - (1—0.786 + 0.368) &

1 b1+2by+3bg+-- —[-.05014] (note the z°1)

_ dH(z) _ 1
a az ., T w (1-0.786+0.368)
= Truncate the number of unknowns to 2 “zeros” ... thus solve for b, and b, (& set b;,b,,...=0)
D= (z = 1)(z = 0.9048)(0.6321) z —0.07932)
. b1z+by (0.04837)(z +0.9672)  (z - 1){z - 0.4180]
. H(Z) = 2_ o oo (2 = 0.9048) (2 — 0.07932)
22-0.7862+0.368 1307 =2 0808) (s - 0078

Digital Controls

(Magic PID Made Easy
Equations)

ELEC 3004: Systems 31 May 2013 29




Implementation of Digital PID Controllers

We will consider the PID controller with an s-domain transfer function

U(s) K;

——— =Gs) = Kp + —= + Kps. :
X(s) G(s) = Kp ; Kps (13.54)
We can determine a digital implementation of this controller by using a discrete
approximation for the derivative and integration. For the time derivative, we use
the backward difference rule

u(kT) = % s %(x(k'l‘) — x[(k — DT)). (13.55)

The z-transform of Equation (13.55) is then

1-2z71 z-1
X(2) = —X(2).
T (2) Tz (2)

Uz) =

The integration of x(f) can be represented by the forward-rectangular integration at
t = kT as

u(kT) = ul(k — 1)T) + Tx(kT), (13.56)

Source: Dorf & Bishop, Modern Control Systems, §13.9, pp. 1030-1

Implementation of Digital PID Controllers (2)

where u(kT) is the output of the integrator at t = kT The z-transform of Equation
(13.56) is

U(z) = z'U(z) + TX(2),

and the transfer function is then

U@x) _ Tz
Xz z-1
Hence, the z-domain transfer function of the PID controller is
KTz z—1
G, =Kp + + = ’ 3.8
(2) L Kp Tz (13.57)

The complete difference equation algorithm that provides the PID controller is
obtained by adding the three terms to obtain [we use x(kT) = x(k)]

u(k) = Kpx(k) + K[u(k — 1) + Tx(k)] + (Kp/T)[x(k) — x(k — 1)]
= [Kp + K,;T + (Kp/T)|x(k) — KpTx(k — 1) + Ku(k —1).  (13.58)

Equation (13.58) can be implemented using a digital computer or microprocessor.
Of course, we can obtain a PI or PD controller by setting an appropriate gain equal
Lo zero.

Source: Dorf & Bishop, Modern Control Systems, §13.9, pp. 1030-1
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Implementation of Digital PID Controllers (2)

e In FPW Terminology (FPW 5.8.4 p. 224

5.8.4 PID Control

Combining all the above yields the PID controller

D(z) = K, (1 i (5.61)

‘Tz  Tp(z 1))‘
Ti(z—1) v Tz ‘

This form of control law is able satisfactorily to meet the specifications for
a large portion of control problems and is therefore packaged commercially
and sold for general use. The user simply has to determine the best values
of A’P‘ T{), and T,r.

Now, What’s Next?

ELEC 3004: Systems 31 May 2013 33
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What’s Next?

Research:
* Thesis Projects:

— Signal Processing
(Eulerian Video
Magnification)

Digital Control
(OpenROVs)

Robotics

— More!

Courses

ELEC4620:
Digital Signal Processing

ELEC4630:
Image Processing &
Computer Vision

METR 4202:
Advanced Control & Robotics

CSSE4010:
Digital System Design

Today’s Lecture is Brought To You By the Number 5

ELEC 3004: Systems

31 May 2013 35
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SECATS:
One more Systems Example

e [Is ELEC 3004 Linear?

* ELEC Controllability?

* [s it / the instructor Stable?

SECATS:
Let’s look back at the topic list from Lecture 1

The course is has a huge mandate:

* Itisreally 3 - /2 courses in one !
— Linear Systems
— Signal Processing
— Controls & Digital Controls

e ~Itisb r o a d !

* There is a logic to it
— They share the same
mathematical nature (poles & zeros)
— The math is common
to more than just circuits!

18



Lots of Stuff To Cover...

/o
V.
v.

<<%

.

E AN N

V-
V.

v
Ve
V.

Systems v
Signal Abstractions
Signals as Vectors / Systems as Maps V.

V.
Linear Systems and Their Properties
LTI Systems V.
Autonomous Linear Dynamical Sysleﬂé .
V.
Convolution
FIR & IIR Systems v.
Frequency domain v.
Fourier Transform (CT) V.
Fourier Transform (DT) X.
v.
Even and Odd Signals X
Likelihood
Causality X
Impulse Response v.
Root Locus v
Bode Functions X.
v.
v.

Left-hand Plane

Frequency Response v. Symmetric matrices, quadratic forms,
matrix norm, and SVD

Discrete Time v Controllability and state transfer

Continuous Time Ve Observability and state estimation

. And that, of course,

Laplace Transformation
Linear Systems are Cool! ©®

Feedback and Control
Additional Applications

Linear Functions

Linear Algebra Review
Least Squares

Least Squares Problems
Least Squares Applications

Matrix Decomposition and Linear
Algebra

Regularized Least Squares

Least-squares

Least-squares applications
Orthonormal sets of vectors
Eigenvectors and diagonalization

Linear dynamical systems with inputs
and outputs

Yes, this is Hard! Why?

Breath

— Books, books, everywhere, yet we’re all on Wikipedia!!

— Authors tend to be “too generalizable”

Assumptions:

— Numerous conditions that need to be remembered

Tacit Details:

- The need for examples (but these are few and always seem the same)

* Time consuming

19



“4” Is Average

i

What is a 3?

Grades: Better than you think!

45

o

Problem Set 1

» Extra Credit

Mean
Median
St. Dev

Lab 1 Lab 2 Lab 3 Lab 4
3.683486239  3.305084746 3.65 3.229167
4 3 4 3
0.853112355 0.764780622 0.47697 0.62047

Quiz 1, 2, & 3:

Quiz 1
7637868 Quiz2  Quiz3

7.535433  4.706522
7.5 3 5

1.651598 2.056468  1.115971

20



SECaTs: Some Lessons in the Works for Next Year

* I shall only use my own slides

* Less is more!
— Smaller assignments
— More time for Examples

* Revised Platypus (using TinyMCE)

* Better organization
— Better (more structured) tutorials
— More examples!!
— I get that. But, we’ve come a long way

=>» To make this happen I need your support!

Next Time in Linear Systems ....

Week | Date Lecture Title
) 27-FebjIntroduction
1-MarlSystems Overview
2 ignals & Signal Models
8-Mar|System Models
5 13-MarlLincar Dynamical Systems
: 15-MarjSampling & Data Acquisition
A 20-Mar[Time Domain Analysis of Continuous Time Systems
22-MarlSystem Behaviour & Stability
5 2
3 29-MarHoliday
% 10.AF:|irmquency Response
12-Apriz-Transform
S 17-ApriNoise & Filtering
19-Apr/Analog Filters
3 24-AprDiscrete-Time Signals
26-AprDiscrete-Time Systems
B 1-May|Digital Filters & IIR/FIR Systems
3-May|Fourier Transform & DTFT
- ion to Digital Control
10-May[Stability of Digital Systems
" 15-May[PID & Computer Control
17-May| in Industry
i~ 22-May[State-Space
24-May|Controllability & Observability
5 29:May/State-Space: Made Clear
31-Mayls y and Course Review

* We’re at the End. It’s (the) final!
* Thank you folks!
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. Now Finally Some Philosophy o,
Systems: Signals, Controls...A Fundamental Yearn!

ELEC 3004: Systems,

the headlar

at night
mps of other mountain

If you want to build a ship, don't drum up the
men to er wood, divide the work and give
orders. Instead, teach them to yearn for the vast
and endless sea.

31 May 2013 44
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