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Today 1n Linear Systems...

Week Date Lecture Title
| 27-Feb|Introduction
1-MarSystems Overview
5 6-Mar|Signals & Signal Models
8-Mar|System Models
3 13-Mar|Linear Dynamical Systems
15-Mar{Sampling & Data Acquisition
4 20-Mar(Time Domain Analysis of Continuous Time Systems
22-Mar|System Behaviour & Stability
5 27-Mar|Signal Representation
29-MarHoliday
6 10-Apr|Frequency Response
12-Aprjz-Transform
7 17-AprNoise & Filtering
19-Apr|Analog Filters
3 24-Apr|Discrete-Time Signals
26-Apr|Discrete-Time Systems
9 1-May|Digital Filters & TIR/FIR Systems
3-May|Fourier Transform & DTFT
10 8-May|Introduction to Digital Control
10-May|Stability of Digital Systems
1 15-May|PID & Computer Control
17-May|Applications in Industry
12 22-May|State-Space
24-May|Controllability & Observability
13 | 29-May|State-Space: Made Clear
31-May/Summary and Course Review

Goals for the Week

Today:
* Review State-Space

* Quick introduction to Information Theory
and Communications

Friday:
* Everything
(Literally!)




Announcements:

* Practice Final Posted: |
— You’re welcome © =
— While it’s final #3 (real, supp, & prac):

* It shares no questions with either the real or the supp.
— Exam Review Session: June 7,

=> It is harder than the real thing!
(v its primarily to practice the material not the timing)

* Problem Set 2 Grading:

— May 31 (& you get your grades during the semester)
— June 7 (More time, better feedback??)

State-space control design
Lo Que pasa????

» Design for discrete state-space systems is just like the
continuous case.
— Apply linear state-variable feedback:
u=—-Kx
such that det(zl — ® + I'K) = a.(2)
where a.(z) is the desired control characteristic equation

Predictably, this requires the system controllability matrix
C=[I ®r &?r .- & 1r] to be full-rank.




Solving State Space...

» Recall:

r= f(x,u,t)
+ For Linear Systems:

i (t) = A#)x(t) + B () u(t)
y(@)=C @)z (t)+ D (%) u(t)

e For LTI:
— = Ax + Bu

Cxz+ Du

— Y

Solving State Space

* In the conventional, frequency-domain approach the
differential equations are converted to transfer functions as
soon as possible
— The dynamics of a system comprising several subsystems is

obtained by combining the transfer functions!

» With the state-space methods, on the other hand, the
description of the system dynamics in the form of differential
equations is retained throughout the analysis and design.




State-transition matrix ®(t)

» Describes how the state X(t) of the system at some time t
evolves into (or from) the state x(t) at some other time T.

z(t) = P (t,7)z(7)

Solving State Space...

Time-invariant dynamics The simplest form of the general differential equation
of the form (3.1) is the ““homogeneous,” i.e., unforced equation

%= Ax (3.2)
where A is a constant k by k& matrix. The solution to (3.2) can be expressed as

x(1) = e*e (3.3)

]

where e is the matrix exponential function
# r
eM=f+ A+ A=+ A —+--- (3.4)
2 31
and ¢ is a suitably chosen constant vector. To verify (3.3) calculate the
derivative ol x(1)
dx(r) d ., .
—_—=—(e™)c (3.5)
dt dr

and, from the defining series (3.4),
d Ar 2 ‘F) th Al
e = A+ AU+ A=+ = Al T+ A+ A=+ ) = Ae
di 21 2!

Thus (3.5) becomes

dx(t)

= Ae™'c = Ax(1)
di




Solving State Space

which was to be shown. To evaluate the constant ¢ suppose that at some time 7
the state x(r) is given. Then, [rom (3.3),

x(T) = Ve (3.6)
Multiplying both sides of (3.6) by the inverse of ¢”" we find that
¢ =(e") "x(7)
Thus the general solution to (3.2) for the state x(r) at time ¢, given the state x(7)
at time 7, is
x(t) = e*(e?) ' x(7) (3.7

The following property of the matrix exponential can readily be established by
a variety of methods—the easiest perhaps being the use of the series definition
(3.4)—

Al = gMigAy (3.8)
for any t, and t,. From this property it follows that
(e*7) " = e~ (3.9)
and hence that (3.7) can be written
x(1) = ™ x(r) (3.10)

Solving State Space

The matrix e

subsequently.

We now turn to the problem of finding a “particular™ solution to the
nonhomogeneous, or “‘forced,” differential equation (3.1) with A and B being
constant matrices. Using the “method of the variation of the constant,”[1] we
seek a solution to (3.1) of the form

x(t) = eelr) (3.11)

is a special form of the state-transition matrix Lo be discussed

where ¢(t) is a function of time to be determined. Take the time derivative of
x(t) given by (3.11) and substitute it into (3.1) to obtain:

Ae™e(1) + eMe(1) = Ae™e(1) + Bu(t)

or, upon cancelling the terms A e™'c(f) and premultiplying the remainder by

e—/l!

é(t) = e MBu(t) (3.12)

Thus the desired function ¢(1) can be obtained by simple integration (the
mathematician would say “by a quadrature™)

e(t) = J- . c'_"“Bu()() dA

The lower limit T on this integral cannot as yet be specified, because we will
need to put the particular solution together with the solution to the




Solving State Space

homogeneous equation to obtain the complete (general) solution. For the
present, let T be undefined. Then the particular solution, by (3.11), is

[} I}
x(1) = e™ J e ™Bu(A) di = j MM BY(A) dA (3.13)
T T

In obtaining the second integral in (3.13), the exponential e™, which does not
depend on the variable of integration A, was moved under the integral, and
property (3.8) was invoked to write e™Me M = MM,

The complete solution to (3.1) is obtained by adding the “complementary
solution™ (3.10) to the particular solution (3.13). The result is

L}
x(t) = e x(7) + I e M Bu(A) da (3.14)
L
We can now determine the proper value for lower limit T on the integral. At
i = 7 (3.14) becomes

x(7) = x(7) -I-J. e™M M Bu(A) da (3.15)
7
Thus, the integral in (3.15) must be zero for any u(r), and this is possible only
if T = 7. Thus, finally we have the complete solution to (3.1) when A and B are
constant matrices

x(t) = e ".\-{T)a-j e™M M Bu(A) dA (3.16)

T

Solving State Space

This important relation will be used many times in the remainder of the book.
It is worthwhile dwelling upoen it. We note, first of all, that the solution is the

O

sum of two terms: the first is due to the “initial” state x(r) and the second—
the integral—is due to the input u(r)} in the time interval 7 = A = 1 between the
“initial” time 7 and the “present” time f. The terms initial and present are
enclosed in quotes to denote the fact that these are simply convenient defini-
tions. There is no requirement that ¢ = 7. The relationship is perfectly valid even

when t = 7.

Another fact worth noting is that the integral term, due to the input, is a
“convolution integral™: the contribution to the state x(r) due to the input u is
the convolution of u with e*'B. Thus the function e¢™B has the role of the
impulse response[ ] of the system whose output is x(¢) and whose input is u(#}.

If the output y of the system is not the state x itself but is defined by the

observation equation
y=Cx

then this output is expressed by

1

y(1) = Ce ' x(n) + J Ce* M Bu()) dr 3.17)

T




Solving State Space

and the impulse response of the system with y regarded as the output is
C\‘.’A“_A)B‘

The development leading to (3.16) and (3.17) did not really require that B
and C be constant matrices. By retracing the steps in the development it is
readily seen that when B and C are time-varying, (3.16) and (3.17) generalize to

x(f) = e x(r) + j eV B u(A) dA (3.18)

T

and

(1) = C(t) e* x(7) + j C(1) e M B(A)u(A) dr (3.19)

T

Digital State Space:
Recall from the Last Episode ...

+ Difference equations in state-space form:

x[n+ 1] = Ax[n| + Bu|n]
y[n] = Cax[n] + Duln]

* Where:
— u[n], y[n]: input & output (scalars)
— X[n]: state vector




Digital Control Law Design

In Chapter 2, we saw that the state-space description of a continuous system
is given by (2.43),

x =Fx+ Gu, (6.1)
and (2.44),

y = Hx. (6.2)

‘We assume the control is applied from the computer by a ZOH as shown in
Fig. 1.1. Therefore, (6.1) and (6.2) have an exact discrete representation as
given by (2.57),

x(k + 1) = ®x(k) + Tulk),

y(k) = Hx(k), (6.3)
where
@ =T (6.4a)
= j eFlanG, {6.4b)
0

Can you use this for more than Control?

*Yes




Frequency Response in State Space

H(:)=C(:I-A)"'B+ D= .
10022 — 200z + 80

Poles at == (1.55, 1.45.
Eigenvalues of A:

L1, 1.45..55 » e

What are the (physical)
implications?

The Approach:

Formulate the goal of control as an optimization (e.g. minimal impulse response,
minimal effort, ...).

*  You’ve already seen some examples of optimization-based design:

— Used least-squares to obtain an FIR system which matched (in the least-squares sense)
the desired frequency response.

— Poles/zeros lecture: Butterworth filter

Discrete Time Butterworth Filters

“Maximally-flat filter”. Sacrifice sharpness to have flat response in
pass band and stop band.

_ 3 : _ 0.8
0.6
L ] 0.4

g 0.8
3 % 0.2
E 06 g o0 X
% — -0.2
= 0.4+ -0.4
-0.6
0.2 -0.8
-1
o— | ) JJ L
0 1 2 3 4 5 6 = 05 0 05 1
Frequency (rad/sec) Real
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“Maximally-flat filter”. Sacrifice sharpness to have flat response in
pass band and stop band.

4
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E 2"
' 06 g o0
2 — -02
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“Maximally-flat filter”. Sacrifice sharpness to have flat response in
pass band and stop band.
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“Maximally-flat filter”. Sacrifice sharpness to have flat response in
pass band and stop band.
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“Maximally-flat filter”. Sacrifice sharpness to have flat response in
pass band and stop band.
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“Maximally-flat filter”. Sacrifice sharpness to have flat response in
pass band and stop band.
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“Maximally-flat filter”. Sacrifice sharpness to have flat response in
pass band and stop band.
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How?

* Constrained Least-Squares ...
One formulation: Given (]

a a — 12 —
minimize  ||@]|*, where i =
w0 u[1],... . u[N]

u[N]
subjectto  x[N]| = 0.
Note that

n—1

x[n] = A"z[0] + Z .-‘I(”_l_HRH[;I\':.
k=0

so this problem can be written as

minimize || Az — bys||”
.J'!s

subjectto  Cjorye = D5,

Shannon Information Theory

Information

ource Transmitter Receiver Destination
— 1 —
Signal Received
Signal
Message Message

Noise
Source

On the transmission of information over a noisy channel:

* An information source that produces a message

* A transmitter that operates on the message to create a signal which can be sent
through a channel

* A channel, which is the medium over which the signal, carrying the information
that composes the message, is sent

* A receiver, which transforms the signal back into the message intended for
delivery

* A destination, which can be a person or a machine, for whom or which the
message is intended

14



Next Time in Linear Systems ....

Week

Date

Lecture Title

1

27-FebjIntroduction

1-Mar|Systems Overview

& Signal Models

8-MarSystem Models

13-Mar|Linear Dynamical Systems

1 ing & Data A

20-MarTime Domain Analysis of Continuous Time Systems

22-MarSystem Behaviour & Stability

27-MarSienal R

29-MarHoliday

10-AprFrequency Response

12-Aprjz-Transform

17-Api|Noise & Filtering

19-Apr|Analog Filters

24-Apr|Discrete-Time Signals

26-Apr|Discrete-Time Systems

1-May|Digital Filters & IIR/FIR Systems

3-May|Fourier Transform & DTFT

8-May|Introduction to Digital Control

10-May|Stability of Digital Systems

15-May|PID & Computer Control

17-May|Applications in Industry
2 S

P
24-May(Controllability & Observability

13

29-May|State-Space: Made Clear

31-May|

Summary and Course Review

AKA: The last lecture!

15



