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Today...

Week

Date

Lecture Title

27-Feb)|

Introduction

1-Mar|

Systems Overview

6-Mar|

Signals & Signal Models

8-Mar|

System Models

13-Mar|

LLinear Dynamical Systems

15-Mar|

Sampling & Data Acquisition

20-Mar;

Time Domain Analysis of Continuous Time Systems

22-Mar,

System Behaviour & Stability

27-Mar|

Signal Representation

29-Mar|

Holiday

10-Apr]|

[Frequency Response

12-Apr|

z-Transform

17-Ap

Noise & Filtering

19-Ap

/Analog Filters

24-Apr

Discrete-Time Signals

26-Apr|

Discrete-Time Systems

1-May

Digital Filters & IIR/FIR Systems

3-May

[Fourier Transform & DTFT

8-May|

Introduction to Digital Control

10-May)|

Stability of Digital Systems

15-May

PID & Computer Control

17-May

/Applications in Industry

22-May|

State-Space

24-May|

Controllability & Observability

29-May!

Information Theory/Communications & Review

31-May

Summary and Course Review




Goals for the Week

Digital Filter Types

FIR Filter Types

IIR Filter Types

DT Convolution Review = Friday

DFFT Methods
(Separate from Fourier Transforms — Please review [1] and [2])

Announcements: /\

Problem Set 2 is up!
— Due: Friday, May 24t

Lab 3 (Experiment 4):
— Runs on Week 9 (this!) and Week 10

“Pop-Quiz” Dates:
— May 8: Signal Processing
— May 29: Digital Control

Some Feedback on the Problem Set 1 Survey!
— 126 pages (some more colorful than others)...
— General positive
— We’re listening > !
Quiz dates announced o

Platypus: Ctrl + S added, line wrapping added [redactor bug],
LaTeX: Love and Not Love Let’s Review Mathtype and the HTML view
“Why typing? “- it is anonymously peer-reviewed. It’s about the fair-go...

It’s not about your handwriting, it’s about the other person’s ... how fair would it be if

your peer review score went down of their sloppiness.

— HW 2 feedback: “Question 10 is Awesome” -- Thanks! ©




=» Two Types of Systems

e Linear shift-invariant:

* Linear time-invariant system

N—1
Yy = Z u[k]Zkh.
k=0

Z: Shift operator
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Impulse Response of Both Types
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=» Digital Filters

» Wikipedia Says:

A digital filter is a system that performs mathematical operations on a sampled,
discrete-time signal to reduce or enhance certain aspects of that signal.

 Basically we have a transfer function or

... a difference equation

In the Z-domain;

H(») = B&) — botb1z L dboz 24 by
A(z) — 1+arzT4anz2+—FayzM

* This is a recursive from with inputs (Numerator) and outputs (Denominator)
=> “IIR infinite impulse response” behaviour

+ If the denominator is made equal to unity (i.e. no feedback)

=> then this becomes an FIR or finite impulse response filter.

=» Digital Filters Types

FIR
From H(z):
2> Hw)

ho + hye R e o fy—qe

n—1 n—1
= Zﬁ, cos tw — 1Zhr.~i]lf¢.'
f=0 =0

—> Filter becomes a “multiply,
accumulate, and delay” system:

n—1
yl(t) Zh_-ru_f—.‘l

y[n] = boz[n] + biz[n — 1] +-- - + bya[n — N|
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1IR

» Impulse response function
that 1s non-zero over an
infinite length of time.




FIR Properties

* Require no feedback.

* Are inherently stable.

* They can easily be designed to be linear phase by making the
coefficient sequence symmetric

* Flexibility in shaping their magnitude response

* Very Fast Implementation (based around FFTs)

* The main disadvantage of FIR filters is that considerably more
computation power in a general purpose processor is required
compared to an IIR filter with similar sharpness or selectivity,
especially when low frequency (relative to the sample rate)
cutoffs are needed.

FIR as a class of LTI Filters

* Transfer function of the filter is

g - Y@ Sl
(2) = = N
X(2) 1+, arz*

* Finite Impulse Response (FIR) Filters: (N = 0, no feedback)
= From H(z):

Hi{w) ho + .’“r_i"' + e+ hy, |e_i"

-1 n—1
Z hy costw — i Z iy sin fw
t=0 =0

 H(®) 1s periodic and conjugate
= Consider o € [0, 7]




FIR Filters

* Let us consider an FIR filter of length M
* Order N=M-1 (watch out!)
* Order - number of delays

M—1 M-—1

y(n) = Z bre(n—Fk)= Z hik)x(n—k)

k=0 k=0

TDI +|:|_‘lv [] = unit delay
®--®

¥

T

FIR Impulse Response

Obtain the impulse response immediately with x(n)= d(n):

M—1
h(n)=y(n)= Z 0.0 (n—k) =b,
k=0
* The impulse response is of finite length M (good!)

* FIR filters have only zeros (no poles) (as they must, N=0!)
— Hence known also as all-zero filters

» FIR filters also known as feedforward or non-recursive, or
transversal filters




FIR & Linear Phase

» The phase response of the
filter is a linear
function of frequency

* Linear phase has
constant group delay, all
frequency components have
equal delay times. . No
distortion due to different time
delays of different frequencies

* FIR Filters with:

a) FIR Filter (Type Il) having Linear Phase

b) FIR Filter (Type V) having Linear Phase

Moo
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©) IR Filter having Non-Linear Phase
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d) FIR Filter having Non-Linear Phase
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ne=_ooh[n] - sin(w-(n—a)+5)=0

FIR & Linear Phase = Four Tvpes

a) FIP Filter (Type ) having Linear Phase

b) FIR Filter (Type [¥) having Linear Phase
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Ref: Wikipedia (Linear Phase
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Impulse response # coels | H (w) Type
h(n)=h(M—1-n) |Odd [e-iwtM-172 (;, (AL) 42 (M2 g (AL gy t-o.«(w--a-lj 1
hin)=h(M—-1-n) Even e~ iwiM=1)/29 Ei.‘fl_:”’;z B — k) cos (w (k- 1)) 2
hin)— —h(M—1-n) | Odd in (wk 3
hin)=—h(M—1—n) | Even e~dlw(M=1)/2-5/2]9 Ziﬂ,_]:"';z B2 — k) sin (w (k- 1)) 4

* Type 1: most versatile

* Type 2: frequency response is always 0 at o=n

(not suitable as a high-pass)

* Type 3 and 4: introduce a n/2 phase shift, 0 at ®=0

(not suitable as a high-pass)




FIR Filter Design

* How to get all these coefficients?
H(w) =| ho+hie™™ 4 ot hy_gemin=e st —p{z] {h

OO

FIR Design Methods:
1. Impulse Response Truncation

+ Simplest

— Undesirable frequency domain-characteristics, not very useful
2. Windowing Design Method

+ Simple

— Not optimal (not minimum order for a given performance level)
3. Optimal filter design methods

+ “More optimal”

— Less simple...

FIR Filter Design & Operation
Ex: Lowpass FIR filter

* Set Impulse response (order n = 21)
* “Determine” h(t)
— h(t) is a 20 element vector that we’ll use to as a weighted sum

* FFT (“Magic”) gives Ffequen y Response & Phase

| H (w)]
LH(w)




Why is this “hard”? Looking at the Low-Pass Example

Lif |w| <we
0if we < |w| <=

Ha(w) = |

* Why is this hard?
— Shouldn’t it be “easy” ??
... Just hit it with some FFT “magic” and then keep the bands we
want and then hit it with some Inverse-FFT “supermagic”???

— Remember we need a “system” that does this
“rectangle function” in frequency

— Let’s consider what that means. ..
« It basically suggests we need an Inverse FFT ofa “rectangle function”

Flashback: Fourier Series & Rectangular Functions

§: Fourier Tranform

e (3)) = 220

X(t)

§{rect (t)} = sinc (

2)

\ 1
=) me, i
i
A~
AV R

h cnx. m26719/1.1 on An x 0 2% iz 6R
http://www fr com/input/?i=IFFT%28sinc%28{%29%29

See:

« Table 7.1 (p. 702) Entry 17
& Table 9.1 (p. 852) Entry 7




Flashback: Fourier Series & Rectangular Functions [2]

» The sinc function might look familiar
— This is the frequency content of a square wave (box)

' Ref: htip: A i input/?i=FFT%28rect%28t%29%29
g/content/m32899/1.8,

» This also applies to signal reconstruction!
=» Whittaker—Shannon interpolation formula

— This says that the “better way” to go from Discrete to Continuous
(i.e. D to A) is not ZOH, but rather via the sinc!

z(t) = Y00 x[n] - sinc (t—,_;}T)

~ FIR and Low Pass Filters...

 However!!
a sinc is non-causal and
infinite in duration

1if |w| < w,
Oifw, <|w|<m

Hri (“‘J) = {

Has impulse response:

We SINWeT
hq(n) = ————

T WeN

Thus, to filter an impulse train _
with an ideal low-pass filter use: | And, this cannotbe
implemented in practice ®

z(t) = (22 _ x[n] -6 (t —nT inc (4
o (t) (Zn——ocT[n] (t=n ))*Smc(’) ** we need to know all samples of the

input, both in the past and in the futurg

10



Plan 0: Impulse Response Truncation

Maybe we saw this coming...
= Clip off the sinc at some large n

~ sin (nw, .
h(n) = S0 i) for |n| <M and 0 otherwise
™
M 1 A [T
12 12
|:- ‘. _ [} |.'-- ..
i ':l J‘I - L {I‘ I'
IJU 02 04 0.6 o8 r.IZU 02 0.4 0.6 o 1
N | freseguienpne v Now 1 i

* Ripples in both passband/stopband
and the transition not abrupt (i.e., a transition band).
* As Mo, transition band—> 0 (as expected!)

=» FIR Filters: Window Function Design Method

* Windowing: a generalization of the truncation idea

* There many, many “window” functions:
— Rectangular
— Triangular
— Hanning
— Hamming
— Blackman
— Kaiser
— Lanczos

— Many More ... (see: http://en.wikipedia.org/wiki/Window_function)

11



Some Window Functions [1]

1. Rectangular

w(n) =1

Rectangular window Fourier transform

0.9

0.8
20.7
Eo.s
Zos
E0.4
0.3

. decibels

0.2
0.1
0 -130
0 N-1 -40-30-20-10 0 10 20 30 40
samples bins

ELEC 3004: Systems | May 2013 - 23
Windowing and its effects/terminology
n 4
ITE:";;III Mainlobe
=10+ ' §ide]uhes
—133 [ P
=20 + "
Rolloff rate
=20 dB/decade
- (\ m (\ N\ .
. | ATATAY
0 2w 10w 20r o
T T T

ELEC 3004: Systems | May 2013 - 24

Lathi, Fig. 7.45
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Some More Window Functions ...

2. Triangular window

n_N=1

w(n) =1-— NF1
2

Triangular window Fourier transform
11
|

|

 ———— — —

-130
-40-30-20-10 0 10 20 30 40
samples bins

* And Bartlett Windows
— A slightly narrower variant with zero weight at both ends:

_N-1

W N-1
w(n) =1 — | =x=1-
2

i

Some More Window Functions...

3. Generalized Hamming Windows
w(n) = a— B cos (%)

- Hanning Window
— w(n) = 0.5 (1 — cos (13;1”1))

Hann window Fourier transform

T T [ T T T

-130
-40-30-20-10 0 10 20 30 40
samples bins

9 Hamming 2 S Window Hamming window (a = 0.53836) Fourier transform

| E——

—a=054, =1—-a=0.46

. decibels

130
-40-30-20-10 0 10 20 30 40
samples bins.

i
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Some More Window Functions...

4. Blackman—Harris Windows
— A generalization of the Hamming family,
— Adds more shifted sinc functions for less side-lobe levels

w(n) = ag—a1 cos (§7) +az cos (¥2) ~as cos (¥7%)

Blackman-Harris window Fourier transform
1 T 1  — — — o ——1—1 - — —
09| . -10 |- -
20 -
0.8 - - -30 |- -
00.7 - -1 40 —
So0.6| -4 @50 -
Zos5f 4 560 T ]
av. g-70 - -
50.4 — - ©-80 | -
0.3 — -90 - -1
- | -100 -
0.2 a0k ]
0.1 - -120 | —

-130

4

-40-30-20-10 0 10 20 30
samples bins

0

Some More Window Functions...

5. Kaiser window
— A DPSS (discrete prolate spheroidal sequence)
— Maximize the energy concentration in the main lobe

Iy (71'06\/1—(%—1)2)
Io(ma)

— w(n) =

—  Where: J, is the zero-th order modified Bessel function of the
first kind, and usually a = 3.

Kaiser window (a = 3) Fourier transform
| S —

| B - | S —

. decibels
L
=]

-130
0 N-1 -40-30-20-10 0 10 20 30 40
samples bins

{0
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Comparison of Alternative Windows —Time Domain

Windeow funetions M=16
AT -,
7

Hanning
= Hamming
— - Blackman H

0.of

0.8

07

0.8F-

0.5

04

0.2

0.2

0} 7

0 5 10 15 Punskaya, Slide 90
Sample number

Comparison of Alternative Windows
Frequency Domain

Fourier transforms of windows M=18

T T T T T
. —— Hanning

. — Hamming

- — - Blackman

20

—GO

-100

3.5
Punskaya, Slide 91
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Summary Characteristics of Common Window Functions

Rolloff Peak

Mainlobe Rate Sidelobe Peak 20log,,d
No Window w(f) Width (dB/oct) level (dB)
- t 4
] Rectangular: rect = o —6 —-13.3 -21dB
t &
: Bartlett: A | — = —12 —26.5
L a(d) - S
r
2 &
3 Hanning: 0.5 [1 +uus($)] : —18 =315 -44dB
Hamming: 0.54 + 0.46 cos | —=. e 6 2.7
AMMIng: K CO! — Spam - - . D
4 o ONT T -53dB
2t 4t 127
5 Blackman: 0.42 4+ 0.5 cos —) + 0.08 cos (—) R —18 —58.1
5 (5 ) T -74dB
I|I t 2
Iy |eyf1—4 [—)
= v T ) 11.27 5
aiser: — Iu(ﬂj —= 0=x=<10 — —6 —59.9 {« = 8:168)

Lathi, Table 7.3

Punskaya, Slide 92

FIR: Rectangular & Hanning Windows

* Rectangular * Hanning

=16

M

=>» Hanning: Less ripples, but wider transition band

I

d with Hanning windowy

1 2 3

M=16

Punskaya, Slide 93
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Adding Order

+ Transition and Smoothness
— Increased Size

Punskaya, Slide 94

Windowed FIR Property 1:
Equal transition bandwidth

: NN

.
VARV,

* Equal transition bandwidth on both sides
of the ideal cutoff frequency

a
[

]

Punskaya, Slide 96
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Windowed FIR Property 2:
Peak Errors same in Passband & Stopband

N —
W, ]

;e
—.wl F.\,-..,
o e §
Y

 Peak approximation error in the passband (1+3 = 1-9)
is equal to that in the stopband (6 = -0)

Punskaya, Slide 96

Windowed FIR Property 3:
Mainlobe Width

NN

-/\ - W {ele-0hy
AN s p
SV

Punskaya, Slide 99

* The distance between approximation error peaks is
approximately equal to the width of the mainlobe Aw_,

18



Windowed FIR Property 4:
Mainlobe Width [2]

- M)

§o
N Y L ()

AT\ e ‘
TN NS
Punskaya, Slide 96
¢ The width of the mainlobe is wider than
the transition bandwidth

Windowed FIR Property 5:
Peak A9 is determined by the window shape

- M)

i S S0 s © o Haled)
L) -

1

R —
.

o #e]
—.wl ; Ay
-/\ - W {ele-0hy
AN s p
R

Punskaya, Slide 96

* peak approximation error is determined by
the window shape, independent of the filter order

19



Window Design Method Design Terminology

—— - H(ei)
14 ¢ —

Mo NG A N Ha(el)
e

= Au}
| Where:
: : | * o, cutoff frequency
a—+ C
— \' / R :
oL we B e J: maximum

passband ripple

I
— = Aw,,
/ \' Weiw-oy Ao: transition bandwidth
| / o 6
| | P
/N [NE 0

\/. \/ * Ao, width of the

window mainlobe

Punskaya, Slide 96

Passband / stopband ripples

o, and @, Corner Frequencies

Passband / stopband ripples are often expressed in dB:
* passband ripple = 20 log,, (146, ) dB

* peak-to-peak passband ripple = 20 log,, (1+25,) dB
* minimum stopband attenuation = -20 log,, (5,) dB

Ex:

8,=6% > =20 log,, (1+28,) = 1dB
8,=0.01 > =-201ogl0 (5,) = 40dB

20



Summary of Design Procedure

L.

Select a suitable window function
Specify an 1deal response H (o)
Compute the coefficients of the ideal filter / (n)

Multiply the ideal coefficients by the window function to
give the filter coefficients

Evaluate the frequency response of the resulting filter and
iterate if necessary (e.g. by increasing M if the specified
constraints have not been satisfied).

Punskaya, Slide 105

Windowed Filter Design Example

* Design a type I low-pass filter with:

— wp=0.2n
— 0s=0.3n .
— 8=0.01 m H(eiw)
40 - |
\/\1\ —— Ha(el)
| —a 1 f"
|
|
t = Aw
| |
I |
O : : |
] . i - ’\ - w
N L | l/\/ — |
I

21



Windowed Filter Design Example:

Step 1: Select a suitable Window Function

b |ayf1 -4 (L]
[oyi-2(3]

e LP with: wp=0.271, ®s=0.3n, 6=0.01

* 0=0.01: The required peak error spec: } Hanning Window
-20log10 (5) =40 dB

* Main-lobe width:

0;-0,=0.31-0.2x =0.1r > 0.1n=8n/ M

—> Filter length M > 80 & Filter order N > 79

» BUT, Type-I filters have even order so N = 80

Windowed Filter Design Example:
Step 2: Specify the Ideal Response

* From Property 1 (Midpoint rule)
D o, = (0, + 0,)/2 = (0.21+0.31)/2 = 0.25x

An ideal response will be:

1 if |o|<0.25x

H;(w) =
a(@) {0 if 0.25% < |w|< n

22



Windowed Filter Design Example:
Step 3: Compute the coefficients of the ideal filter

* The ideal filter coefficients 4, are given by the
Inverse Discrete time Fourier transform of H (o)

x(n) = L X (au)r’-"”dw:%/ eIy

2r by

We SINWen

™

wen

+ Delayed impulse response (to make it causal)

h(n)=h (n NQ_ 1)

=) Coefficients of the ideal filter (via equation or IFFT):

sin (0.57 (n — 40))
7w (n — 40)

h(n) =

Windowed Filter Design Example:
Step 4: Multiply to obtain the filter coefficients

sin (0.57 (n — 40))

= h(n) = m (n — 40)

w(n) = 0.54 — 0.46 cos (2%)

* Multiply by a Hamming window function for the passband:

23



Windowed Filter Design Example:
Step 5: Evaluate the Frequency Response and Iterate

* The frequency response is computed as the DFT
of the filter coefficient vector

* If the resulting filter does not meet the specifications, then:
— Adjust the ideal filter frequency response
(for example, move the band edge) and repeat (step 2)
— Adjust the filter length and repeat (step 4)
— change the window (& filter length) (step 4)

* And/Or consult with Matlab:
— FIR1 and FIR2

— B=FIR2(N,F,M) : Designs a Nth order FIR digital filter with

Windowed Filter Design Example:
Consulting Matlab:

e FIR1 and FIR2
— B=FIR2(N,F,M): Designs a Nth order FIR digital filter

— F and M specify frequency and magnitude breakpoints for the
filter such that plot(N,F,M) shows a plot of desired frequency

— Frequencies F must be in increasing order between 0 and Fs/2,
with Fs corresponding to the sample rate.

— B is the vector of length N+1,
it is real, has linear phase and symmetric coefficients

— Default window is Hamming — others can be specified

24



Next Time in Linear Systems ....

Week Date Lecture Title
27-Feb|Introduction

1-Mar|Systems Overview

6-Mar|Signals & Signal Models

1

2 8-Mar|System Models

3 13-Mar|Linear Dynamical Systems

3 15-Mar|Sampling & Data Acquisition

4 20-Mar[Time Domain Analysis of Continuous Time Systems
22-Mar|System Behaviour & Stability

5 27-Mar|Signal Representation
29-Mar{Holiday

6 10-AprFrequency Response
12-Aprjz-Transform

7 17-AprNoise & Filtering

19-Apr|Analog Filters
24-AprDiscrete-Time Signals
26-Apr|Discrete-Time Systems
1-May|Digital Filters & IIR/FIR Systems

9 3-May|Fourier Transform & DTFT

8-May|Introduction to Digital Control

e 10-May|Stability of Digital Systems

1 15-May[PID & Computer Control
17-May|Applications in Industry

2 22-May|State-Space

24-May|Controllability & Observability
29-May|Information Theory/Communications & Review
31-May|Summary and Course Review

In Conclusion

* FIR Filters are digital (can not be implemented in analog) and
exploit the difference and delay operators

* A window based design builds on the notion of a truncation of
the “ideal” box-car or rectangular low-pass filter in the
Frequency domain (which is a sinc function in the time domain)

* Other Design Methods exist:
— Least-Square Design
— Equiripple Design
— Remez method
— The Parks-McClellan Remez algorithm
— Optimisation routines ...
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