
Question 1

We know that every signal x(t) can be expressed as a sum of even and odd

components (As seen in Lathi section 1.5.2):

x(t) = xe(t) + xo(t)

x(t) = 1
2 [x(t) + x(−t)] + 1

2 [x(t)− x(−t)]
where,

xe(t) = 1
2 [x(t) + x(−t)]

xo(t) = 1
2 [x(t)− x(−t)]

Given that x(t) = sin(πt)u(t), the odd component of signal represented as

xo(t) can be further expressed as:

xo(t) = 1
2 [sin(πt)u(t)− sin(−πt)u(−t)]

Using the identity sin(−t) = −sin(t) and u(−t) = 1 − u(t) this simplifies as

follows:

xo(t) = 1
2sin(πt)u(t) + 1

2sin(πt)(1− u(t))

xo(t) = 1
2sin(πt)

We see that the odd portion of this signal is of sinusoidal form with half the

amplitude of input signal (for time t > 0).

∴ the odd portion of x(t) is periodic.

We can verify this in MatLab by plotting the following:

Furthermore, as a simple exercise, we can show that the sum of even and odd

signals will sum to the original signal.
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Question 2

a)

Backward differencer: y[t] = x[t]− x[t− 1] (1)

Linearity:

To test linearity we check whether superposition holds. That is,

ax1[t] + bx2[t]→ ay1[t] + by2[t]

let x[t] = ax1[t] + bx2[t] and sub into (1),

= (ax1[t] + bx2[t])− (ax1[t− 1] + bx2[t− 1])

= a(x1[t]− x1[t− 1]) + b(x2[t]− x2[t− 1])

= ay1[t] + by2[t]

∴ The system is linear.

Time Invariance:

To test this system for time-invariance, we first delay the input by δ

xd[t] = x[t+ δ]

y1[t] = xd[t]− xd[t− 1] = x[t+ δ]− x[t− 1 + δ]

Now we delay the output by δ

y2[t] = y[t+ δ] = x[t+ δ]− x[t− 1 + δ]

We now see that y1[t] == y2[t].

∴ The system is time-invariant.

Causality:

To test causality, we check that the output at any time t0 depends only on the

value of the input x(t) for t <= t0.

We see that the output of y[t0] depends only on input values to x(t) at times t0

and (t0 − 1) (meeting the above condition).

∴ The system is causal.

b)

Forward differencer: y[t] = x[t+ 1]− x[t] (2)

Linearity:

To test linearity we check whether superposition holds. That is,

ax1[t] + bx2[t]→ ay1[t] + by2[t]

let x[t] = ax1[t] + bx2[t] and sub into (2),

= (ax1[t+ 1] + bx2[t+ 1])− (ax1[t] + bx2[t])

= a(x1[t+ 1]− x1[t]) + b(x2[t+ 1]− x2[t])

= ay1[t] + by2[t]

∴ the system is linear.

Time Invariance:

To test this system for time-invariance, we first delay the input by δ

xd[t] = x[t+ δ]

y1[t] = xd[t+ 1]− xd[t] = x[t+ δ + 1]− x[t+ δ]

Now we delay the output by δ

y2[t] = y[t+ δ] = x[t+ δ + 1]− x[t+ δ]
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We now see that y1[t] == y2[t].

∴ The system is time-invariant.

Causality:

To test causality, we check that the output at any time t0 depends only on the

value of the input x(t) for t <= t0.

We see that the output of y[t0] depends only on input values to x(t) at times

(t0 + 1) and t0. Therefore the system’s output depends on an input value from

future time.

∴ The system is non-causal.

c)

Central differencer: y[t] = x[t+ 1
2 ]− x[t− 1

2 ] (3)

Linearity:

To test linearity we check whether superposition holds. That is,

ax1[t] + bx2[t]→ ay1[t] + by2[t]

let x[t] = ax1[t] + bx2[t] and sub into (3),

= (ax1[t+ 1
2 ] + bx2[t+ 1

2 ])− (ax1[t− 1
2 ] + bx2[t− 1

2 ])

= a(x1[t+ 1
2 ]− x1[t− 1

2 ]) + b(x2[t+ 1
2 ]− x2[t− 1

2 ]

= ay1[t] + by2[t]

∴ the system is linear.

Time Invariance:

To test this system for time-invariance, we first delay the input by δ

xd[t] = x[t+ δ]

y1[t] = xd[t+ 1
2 ]− xd[t− 1

2 ] = x[t+ δ + 1
2 ]− x[t+ δ − 1

2 ]

Now we delay the output by δ

y2[t] = y[t+ δ] = x[t+ δ + 1
2 ]− x[t+ δ − 1

2 ]

We now see that y1[t] == y2[t].

∴ The system is time-invariant.

Causality:

To test causality, we check that the output at any time t0 depends only on the

value of the input x(t) for t <= t0.

We see that the output of y[t0] depends only on input values to x(t) at times

(t0 + 1
2 ) and (t0− 1

2 ). Therefore the system’s output depends on an input value

from future time.

∴ The system is non-causal.
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Question 3

The energy stored in a capacitor can be expressed as

W = q∆Vc → dW = Vcdq →W =
∫ Q

0
Vcdq →W =

∫ Q
0

q
C dq

W = Q2

2C = 1
2C (CVc)

2 = 1
2CV

2
c

(http://hyperphysics.phy-astr.gsu.edu/hbase/electric/capeng.html)

The voltage across the capacitor when it is fully charged will be equal to that of

Vs. Therefore, rearranging this equation and subbing in W = 150J,C = 68uF

we get:

Vs =
√

2W
C =

√
2∗150J
68uF = 2100.42V

This is the voltage required across the given capacitor to store 150J.

When the switch is thrown to ”D”, the capacitor is discharged through Rchest =

10kΩ. The final voltage value on the capacitor after 95J has been delivered is

Vs =
√

2∗(150−95)J
68uF = 1271.868V

Before proceeding, we can check that fibrillation will still occur at this volt-

age, with Rchest = 10kΩ, the current experienced across the chest at the end

of the discharge will still be ic = 1271.868
10000 = 127.1mA. This is greater than the

minimum fibrillation current necessary (75ma - as per question 5).

Now we can relate capacitor voltage to current:

C = Q
Vc

=
dQ
dt

dVc
dt

= Ic
dVc
dt

→ dVc

dt = 1
C Ic → Ic = C dVc

dt

We note that the KVL equation for the RC circuit is:

Vc(t) + Ic(t)R = 0

Vc(t) + CR dVc

dt = 0∫
1
VC
dVc =

∫
− 1
CRdt

ln(Vc) = − 1
CR t+D ; where D is unknown

Vc = e−
1

CR t+D ; Using V0 = e−D we get,

Vc = V0e
− 1

CR t

We know our the voltage initially required to hold a 150J dose. We also know

the remaining voltage after 95J has been delivered to the victim. Therefore we

can solve for time t.

1271.868 = 2100.42e−
t

10K∗68uF

ln 1271.868
2100.42 = − t

0.68

t = 0.3411seconds

As shown above, it will take 0.3411 seconds to deliver a 95J dose.
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Question 4

a) Strictly speaking, the Nyquist frequency is the half the sampling frequency

of a discrete signal (http://en.wikipedia.org/wiki/Nyquist frequency). On the

other hand, the Nyquist rate is two times the bandwidth of a band limited

signal. The Nyquist rate and the Nyquist frequency should not be confused.

We know that the bandwidth of the signal is 3Mhz (3.5-0.5Mhz). Therefore,

the Nyquist rate is equal to 6Mhz, corresponding the minimum sampling rate

required to avoid aliasing. However, using regular sampling techniques, the fre-

quency which Nyquist states a signal should be sampled at is twice that of the

highest frequency contained within the signal. Therefore, in a frequency swept

signal with the highest frequency at 3.5Mhz, the frequency of sampling under

Nyquist is equal to 7Mhz.

b) A noise signal of 2.4Ghz (significantly greater than the measured frequency)

will still effect the samples unless the signal is passed through a low pass filter

with a cutoff frequency selected such that the 2.4Ghz signal is highly attenu-

ated, whilst the low frequency signal is still passed through unaffected. Without

filtering, aliasing of the high frequency wave will occur.

For the interested reader:

The Touche system does not actually sample this signal at this speed, as hav-

ing an ADC this quick would cost a small fortune. The device measures the

returned signal in terms of average voltage in differing frequency bands. The

signal is fed to an isolation buffer before entering an envelope detector which

converts the AC signal into a time varying DC signal which is then sampled

by a 200Khz ADC. Therefore, in a sense, they did not require to sample at

greater than 7Mhz, as they did not care about signal reconstruction, but rather

used analog circuitry to find the average amplitude associated with the different

frequencies.

For a full report on the quite amazing system, you can find the paper here:

http://www.kevinli.net/courses/mobilehci w2013/papers/touche.pdf
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Question 5

Before beginning this question, several assumptions must be clarified. Firstly,

it is unclear whether Uncle Robert measured resistance through a single shoe or

two shoes. For the sake of argument we will assume that he had some intellect

and found the equivelent resistance of both shoes. (Either way the answer will

be fundamentally the same). When modelled as a pure resistor with the current

path going through his shoes, Uncle Robert’s argument holds with only 240
1MΩ =

0.24mA flowing through his body.

It should be noted, if Uncle Robert has a fast switching safety switch, defibril-

lation may not occur anyway.

It becomes apparent that Uncle Robert’s simple highly resistive model is not

complete.

Firstly, the large surface area of his body will have capacitive interactions with

the ground and/or wall. In this light, the human body itself has some capac-

itive properties (evidenced by electrostatic precautions required when working

with sensitive components). In fact, the Electrostatic Discharge Association

(EDA) models the human body as a 100pF capacitor in series with a 1.5k resis-

tor (http://en.wikipedia.org/wiki/ Body capacitance). Other sources note that

high voltage electrical energy has been found to quickly break down human skin,

reducing the body’s resistance dramatically (Reference: http://en.wikipedia.org/wiki/Electric shock

#Body resistance). In fact, a study has found that at 220V (close to this ex-

ample), 95% of a surveyed population has a resistance of approximately 2125Ω,

which is undeniably close to the 1.5k stated previously (Reference: Reilly, J.

Patrick (1998). Applied Bioelectricity: From Electrical Stimulation to Elec-

tropathology (2nd ed.)).

If we do follow the EDA’s model, we would find that the equivalent impedance

of the body is:

Zbody = 1500 + 1
j2π50∗100∗10−9 = (1500− 31831J)Ω

And the total current flowing in his body would be:

Ibody = 240
106+1500−31831J = 2.3952 ∗ 10−4∠1.82A

Which is not much less that the original model (Defibrillation will not occur).

Uncle Robert has also not taken into account the multiple scenarios of electro-

cution. This is important as current can flow through his body in two ways;

from arm to arm or arm to ground. This is because there is a neutral conductor

also going to the lamp inside the wall. Therefore, under conditions of arm-arm

contact, defibrillation will occur ( 240
approx. 2k = 120mA).
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Question 6

a)

x(t) is our continuous signal to be sampled. We want to find x[n] that is peri-

odic. For x[n]=x(nT) to be periodic, it must hold that:

x[n] = x[n+ n0]→ x(nT ) = x((n+ n0)T ) (1)

where n0 is an integer, as x[n] only takes integer arguments.

We can find both the L.H.S. and the R.H.S. of the above equation knowing

that x(t) = ejw0t.

x[n+ n0] = x((n+ n0)T ) = ejω0(n+n0)T = ejω0nT ∗ ejω0n0T (2)

x[n] = x(nT ) = ejω0nT (3)

But in order for (1) to hold, (2) must equal (3):

ejω0nT ∗ ejω0n0T = ejω0nT

Which is only true if:

ejω0n0T = 1 = ej2πk, k ∈ I
∴ w0n0T = 2πk with w0 = 2π

T0

2π
T0
n0T = 2πk

→ T
T0

= k
n0

With both k and n0 being integers, we can see that T
T0

must be a rational num-

ber.

b)

The fundamental period is the smallest value of n0 for which the following equa-

tion holds:

x[n] = x[n+ n0]

We know from part (a) that in order for this to hold, T
T0

= k
n0

= p
q

We can therefore stipulate that the fundamental period of x[n] is in the smallest

n0 such that n0
T
T0

= n0
p
q = k

The smallest n0 such that n0p has a divisor q is also known as the least common

multiple of p and q, divided by p, Thus,

n0 = LCM(p,q)
p

Since k = p
qn0, we see that k = LCM(p,q)

q

The fundamental frequency can be simply stated as

Ω0 = 2π
n0

where T0 = 2π
ω0

Therefore, using the same argument as above, we find:

Ω0 = 2πT
kT0

= 1
kw0T = q

LCM(p,q)w0T

c)

In order to find the number of periods of x(t) needed to obtain the samples that

form a single period, we need to find the smallest integer value ’m’ such that

x[n+ n0] = x(nT +mT0) and x[n+ n0] = x((n+ n0)T )

Therefore, n0 = mT0
T

We note that n0 must be an integer, and therefore mT0

T must be an integer also.

Furthermore, m q
p must then also be an integer as per part (b).

Thus m = LCM(p,q)
q .
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d)

When arbitrarily spacing the samples of x(t) or implementing asynchronous

sampling, we can reduce the number of samples needed for signal reconstruc-

tion. One method of doing this is using a time encoder that encodes the times

when preset signal changes occur, as opposed to constant nyquist rate sampling.

Therefore, asynchronous sampling schemes can be advantageous as it can reduce

the samples required to reconstruct our data. Of course this may require us to

take into consideration the nature of the signals when designing the ADC’s for

a specific application. Below is a good visualisation of Asynchronous sampling.

http://www.cinc.org/archives/2012/pdf/0061.pdf

A disadvantage of asynchronous sampling is that it is more complex to imple-

ment. You should not run to the patent office quite yet. There are plenty of

patents out on asynchronous samplers already, e.g. http://www.google.com/patents/US7327302
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Question 7

a)

We will label Va as shown in the following diagram:

We observe that the op-amp is connected with negative feedback. Therefore we

can make the assumption that V− = V+. We also see that V− = Vout.

We perform KCL analysis at node A:
Va−Vin

1
sC1

+ Va−V+
1

sC2

+ Va−Vout

R1
= 0

Va(sC1 + sC2 + 1
R1

) = VinsC1 + Vout(sC2 + 1
R1

) (1)

We perform KCL analysis at node V+
V+−Va

1
sC2

+ V+

R2
= 0

V+(sC2 + 1
R2

) = VasC2

Va = Vout
sC2+ 1

R2

sC2

Subbing this result into equation (1), we solve for the transfer function H(s)

Vout
sC2+ 1

R2

sC2
(sC1 + sC2 + 1

R1
) = VinsC1 + Vout(sC2 + 1

R1
)

Vout[
sC2+ 1

R2

sC2
(sC1 + sC2 + 1

R1
)− (sC2 + 1

R1
)] = VinsC1

Vout

Vin
= sC1

sC2+ 1
R2

sC2
(sC1+sC2+ 1

R1
)−(sC2+ 1

R1
)

= s2C1C2

(sC2+ 1
R2

)(sC1+sC2+ 1
R1

)−sC2(sC2+ 1
R1

)

= s2C1C2

(s2C2C1+s2C2
2+sC2 1

R1
+ 1

R2
sC1+ 1

R2
sC2+ 1

R2R1
−s2C2

2−
sC2
R1

)

Vout

Vin
= s2C1C2

s2C2C1+ 1
R2
sC1+ 1

R2
sC2+ 1

R2R1

= s2

s2+ 1
R2

( 1
C2

+ 1
C1

)s+ 1
R2R1C1C2

→ This looks like a High Pass Filter, as there are two zeros at 0, and 2 poles in

the negative half of the plane.

b)

When determining the stability of the circuit, we will firsty find stability of the

general circuit (without values used).

We look at the characteristic equation of the high pass sallen key filter:

s2 + 1
R2

( 1
C2

+ 1
C1

)s+ 1
R2R1C1C2

In order to determine the stability of the system, we will apply the Routh-

Hurwitz method (as introduced in METR3200). Firstly we take the character-

istic equation of the system as stated above and formulate the Routh Hurwitz

table/array as follows:

s2| 1 1
R1R2C1C2

0

s1| 1
R2

( 1
C2

+ 1
C1

) 0 0

s0| 1
R1R2C1C2

0 0

The stability criteria outlines that the number of sign changes in the first column

corresponds to the number of non-negative poles. We see that the first entry

in the first column is 1, and therefore, for stability to exist (no non-negative

poles), the following must be true:
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1
R2

( 1
C2

+ 1
C1

) > 0, 1
R1R2C1C2

> 0

In order to find the stability of our specific case of C1 = 0.01uF and R1 = 10kΩ

, we find that:
1

R2C2
+ 108

R2
> 0, 104

R2C2
> 0

We immediately see that for R2 > 0, C2 > 0 these conditions will always hold

and therefore for all practical passive resistor and capacitor components, the

circuit is stable.

∴ the system is stable for all values.

c)

We firstly look at the characteristic equation of the closed loop system equation

using C1 = 0.01uF and R1 = 10kΩ.

s2 + 1
R2C2

s+ 108

R2
s+ 104

R2C2
= 0

There are 2 system parameters which can be varied to find the root loci of this

system. This will lead to infinite root locus plots. We will therefore offer a more

analytical approach and show the root locus on a case by case basis. Firstly, we

pick our varying system gain parameter as:

α = 1
R2C2

This gives us our root locus equation:

s2 + αs+ 108

R2
s+ α104 = 0

Rearranging this into Root Locus form, we get:

α(s+ 104) = −(s2 + 108

R2
s)

α (s+104)

s(s+ 108

R2
)

= −1

We note the open loop poles and zeros of the equation:

Zeros: −104

Poles: 0, −108

R2

We see immediately that there are two cases which will change the root locus

plot arrangement. Namely, it is when the pole dependant on R2 is greater than

or less than the zero on the the left hand side plane.

We must emphasise that by varying the system parameter alpha, and also vary-

ing R2, we have a complete root locus plot for both R2 and C2. However,

through utilising the two different cases outlined above, we can draw two root

locus plots that generalise the system.

We can draw the root locus for cases the following MatLab Code:
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The top plot corresponds to picking R2 = 15000 and the bottom plot corre-

sponds to picking R2 = 5000, a clear dividing case.
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Question 8

Before discussing this question, we first find the solution to the first order dif-

ferential and find N (the number of atoms) in terms of t (time).
dN
dt = −λN∫ N
N(0)

dN
N = −

∫ t
0
λdt

ln(n)|NN(0) = −λ(t− 0)

ln( N
N(0) ) = −λt

N
N(0) = −λt
∴ N(t) = N(0)e−λt

a)

In order to find the percentage left after one lifetime (τ) decay, we find N(τ).

τ = 1
λ

∴ N(τ) = N(0)e−λτ = N(0)e−1

Therefore the fraction atoms left after one lifetime is:
N
N(0) = e−1 = 0.36788 or 36.788%

b)

Firstly, we recall that t 1
2

= τ ln(2) = ln(2)
λ

In order to find concentrations to reach 10%, we do the following:
N
N(0) = 10% = e−λt

ln(0.1) = −2.30259 = −λt
t = ln(10)

λ with λ = ln(2)
t 1
2

∴ t = ln(10)
ln(2) t 1

2
= 3.32193t 1

2

It will take approximately 3.322 half lifes for decay to 10%.

(c) and (d)

Firstly, we will label the lead-211 decay process as 1. The Bismuth-211 decay

as process 2. The Thallium-207 decay as process 3. We note that Lead-207 is

the final state, as it is stable.

Now we can write the system of differential equations as:
dN1

dt = −λ1N1

dN2

dt = −λ2N2 + λ1N1

dN3

dt = −λ3N3 + λ2N2

dN4

dt = λ3N3

Further, from the decay half-lifes we know that: λ = ln(2)
t1/2

λ1 = ln(2)
36 = 0.019254088

λ2 = ln(2)
2.1 = 0.330070086

λ3 = ln(2)
4.8 = 0.144405662

We know that initially the atom count of Bismuth-211. Thallium-207, and

Lead-207 are 0. Furthermore, we also know that Lead is starting at 1kg (our

normalised quantity).

N1(0) = 1

N2(0) = 0

N3(0) = 0
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N4(0) = 0

In order to find the solution to the system of equations above, we turn to

our good friend Pierre-Simon Laplace. Using laplace transforms we can easily

manipulate this system algebraically.

sN1 −N1(0) = −λ1N1

sN2 −N2(0) = −λ2N2 + λ1N1

sN3 −N3(0) = −λ3N3 + λ2N2

sN4 −N4(0) = λ3N3

Taking into account null initial conditions, these equations simplify to:

sN1 −N1(0) = −λ1N1

sN2 = −λ2N2 + λ1N1

sN3 = −λ3N3 + λ2N2

sN4 = −λ4N4 + λ3N3

Note: Although these equations can be trivially solved using Bateman’s equa-

tions, we will do a quick derivation for the reader. We find the solution firstly

for N1:

N1(s) = N1(0)
s+λ1

→ N1(t) = N1(0)e−λ1t

Using this, we find the solution for N2:

N2(s) = λ1N1

s+λ2
= λ1N1(0)

(s+λ2)(s+λ1) = λ1N1(0)
λ2−λ1

1
s+λ1

+ λ1N1(0)
λ1−λ2

1
s+λ2

N2(s) = N1(0) λ1

λ1−λ2
( 1
s+λ2

− 1
s+λ1

)

→ N2(t) = N1(0) λ1

λ1−λ2
(e−λ2t − e−λ1t)

Using this, we find the solution for N3:

N3(s) = λ2N2

s+λ3
= λ1λ2N1(0)

(s+λ1)(s+λ2)(s+λ3) = λ1λ2N1(0)[ 1
(λ2−λ1)(λ3−λ1)

1
s+λ1

+ 1
(λ1−λ2)(λ3−λ2)

1
s+λ2

+
1

(λ1−λ3)(λ2−λ3)
1

s+λ3
]

→ N3(t) = λ1λ2N1(0)[ 1
(λ2−λ1)(λ3−λ1)e

−λ1t+ 1
(λ1−λ2)(λ3−λ2)e

−λ2t+ 1
(λ1−λ3)(λ2−λ3)e

−λ3t]

Using this, we find the solution for N4:

N4(s) = λ3N3

s = λ1λ2λ3N1(0)
s(s+λ1)(s+λ2)(s+λ3) = λ1λ2λ3N1(0)[ 1

λ1λ2λ3

1
s+ 1

−λ1(λ2−λ1)(λ3−λ1)
1

s+λ1
+

1
−λ2(λ1−λ2)(λ3−λ2)

1
s+λ2

+ 1
−λ3(λ1−λ3)(λ2−λ3)

1
s+λ3

]

N4(t) = λ1λ2λ3N1(0)[ 1
λ1λ2λ3

u(t)+ 1
−λ1(λ2−λ1)(λ3−λ1)e

−λ1t+ 1
−λ2(λ1−λ2)(λ3−λ2)e

−λ2t+
1

−λ3(λ1−λ3)(λ2−λ3)e
−λ3t]

→ N4(t) = N1(0)− λ2λ3N1(0)
(λ2−λ1)(λ3−λ1)e

−λ1t− λ1λ3N1(0)
(λ1−λ2)(λ3−λ2)e

−λ2t− λ1λ2N1(0)
(λ1−λ3)(λ2−λ3)e

−λ3t

for t > 0

Note how we needed to work through the representations of N1, N2 and N3 in

order to find N4.

Now we have time domain equations that represent the concentrations of each

isotope. We can now plot these using MatLab:

14



Here we can see the concentration levels of Lead-211 (green), Bismuth-211

(blue), Thallium-207 (red), Lead-207 (Black).

Now we solve for t to find how long it takes for 1Kg of Lead-211 to turn into

0.9Kg of Lead-207.

We use the MatLab ’solve’ tool to do this calculation as follows:
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Therefore, it will take approximately 130.143 minutes for 1000 grams of Lead-

211 to turn into 900 grams of Lead-207. Equivalently, this is approximately

7808.6 seconds.

e)

The radiation emission of a single of Lead-211 to Bismuth-211 nuclide will be

proportional to the percentage of lead-211 multiplied by its decay rate. There-

fore the relationship of total radiation can be expressed as:

γ = N1λ1 +N2λ2 +N3λ3

γ = N1(0)[ 1
s+λ1

λ1+ λ1λ2

λ1−λ2
( 1
s+λ2
− 1
s+λ1

)+λ1λ2λ3[ 1
(λ2−λ1)(λ3−λ1)

1
s+λ1

+ 1
(λ1−λ2)(λ3−λ2)

1
s+λ2

+
1

(λ1−λ3)(λ2−λ3)
1

s+λ3
]]

γ = N1(0)[λ1e
−λ1t+ λ1λ2

λ1−λ2
(e−λ2t−e−λ1t)+λ1λ2λ3[ 1

(λ2−λ1)(λ3−λ1)e
−λ1t+ 1

(λ1−λ2)(λ3−λ2)e
−λ2t+

1
(λ1−λ3)(λ2−λ3)e

−λ3t]]

γ = e−λ1t[λ1+ λ1λ2

λ2−λ1
+ λ1λ2λ3

(λ2−λ1)(λ3−λ1) ]+e−λ2t( λ1λ2

λ1−λ2
+ λ1λ2λ3

(λ1−λ2)(λ3−λ2) )+e−λ3t λ1λ2λ3

(λ1−λ3)(λ2−λ3)

γ = 0.0633 ∗ e−0.0193t − 0.0045 ∗ e−0.3301t − 0.0395 ∗ e−0.1444t

Again, using matlab we can plot the graph of this as:
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