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A Discussion of Sampling Theorems*
D. A. LINDENt, ASSOCIATE MEMBER, IRE

Summary-The convolution theorem of Fourier analysis is a con-
venient tool for the derivation of a number ofsampling theorems. This
approach has been used by several authors to discuss first-order
sampling of functions whose spectrum is limited to a region including
the origin ("low-pass" functions). The present paper extends this
technique to several other cases: second-order sampling of low-pass
and band-pass functions, quadrature and Hilbert-transform sam-
pling, sampling of periodic functions, and simultaneous sampling of a
function and of one or more of its derivatives.

INTRODUCTION

S EVERAI, sampling theoremiis have appeared in the
enigineerinig literature.'-' These miiay be derived in
aI particularly perspicuous mannier by means of the

convolution theoremii of Fourier analysis. The samnplinig
process is regarded as a imiultiplicationi by a periodic se-

(iuenice of 6-funlctioIns, its couniterpart in the frequenicy
(lomain being a conivolutioni by a traini of equispaced 6-
ftunctionis. Interpolation-the recovery of the original
signial fromii its sample values is viewed in the fre-
qIuenicy domluainl as a process of reconistructinig the orig-
inial spectrum by miieanis of a spectral "winidow." The
corresponiding time domiiain operation con1sists of the
conivolutioii of the samiiple imiipulses with the iniverse
Fourier tranisformii of the winidow fuinction1. This ap-
lproach has been- used by a iiumber of authors6" to dis-
cuss the equispaced samuplijig of low-pass functionis. It
is the purpose of this paper to present a consistent set of
lheuristic derivationis for a numiiber of additional samil-
plinig theoremiis.

* Original manutiscript received by the IRE, November 10, 1958;
revised manuscript received, March 30, 1959. Part of the work re-
ported here was done under Nat'l. Sci. Found. Fellowship No.
28,215. Space and facilities were supplied by Office of Naval Res.
Conitract No. 225(44).
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The following transform definitions will be used:

f +
F(f) = f(t)e-i-tdtI

-00

w , 2irf

r+c

f(t) = f F(f)eiltdf.

It will be conveniienit to use the niotationl

a(t) * b(t)-3 a(r)b(l - r)dr.

Following the noomenclature of Kohlenberg,2 samiiplinig
of a time function9 will be designated as first-order if
the sample points are equispaced. Seconid-order sam-
pling involves two interleaved sequences of equispatced
samiipling points.

SAMPLING OF Low-P.Ass FUNCTIONS

The simplest case is that of a time functioni f(t) whlose
spectrum F(f) is limited to - W.f< W. The restult of
sampling the function at regular initervals spaced T
seconds apart is'0

/(I) = f(t) E 6b(t - nr) = Z f(fT)6(I - Tr). (1)

The tranisformli of

Eb(t - IIT) is , a(

Multiplication in the timie domaini corresponids to coIn-
volutioni in the frequenicy domiaini, anid thie first equalitv
of (1) leads to

1 ( F)

1
E 1F(

)I T
(2)

Apart from the weighting factor 1/T, F(f) is seeni to con-
sist of replicas of F(f) cenitered onl the spectral linles
b(f-n/r), as illustrated in Fig. 1.21 The possibility of
recovering the original spectrumn is insured if l1>.2W;
equality is permissible if F(f) does nlot containi a b-fuLIc-

9 All time functions are assumed to be real unless specifically des-
ignated as being complex.

10 All summations are from -oo to + oo unless otherwise stated.
11 F(f) is in general a complex function and is iindicated symboli-

cally in Fig. 1 (a). Weighting factors such as 1 /r will be indicated as
shown in Fig. I (b).
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PROCEEDINGS OF THE IRE

tion at J TV. Assuminig that sampling takes place at
the lowest permiiissible rate, one has 1/r = 2 TI. TIhe
originial spectrumii nmay be recovered by multiplyinig
F(f) by the spectral window funictioni S(f) slhowni in

Fig. l(c). The equivalenit operationi in the titme domanll
is the conivolutioni of f(t) by the iniverse FoLurier trmns-
formii s(t) of S(f), i.e.,

f(t) = s(t) * f(tT)6(t - liT) = I: f(11T)S(/ - HT).

Substituting T= 1/2 W anid the funictionial formii of s(t),

sin 2ir (tV t

f(t)=Ef2 2W()
2 7r 1,1' tI

\2 Tf17

The low-pass funiction f(t) may also be subjected to
secon-id-order samiiplinig. The twvo interlaced sampllinug
trainis

t -

S (fl

(c )

I~

Fig. 1-- [i-it- o(l(1 l- nllpliiit of lo\- v'a fun1ctionX.

F (f)

-W O W

(Ab f

~ \ FA>,

and

f, 5 I - - a

will be designiated by the letters .1 antd B, respectivek.
The sanmpled funictionis are

f-,(1) = ( ' (4a)

-_~~~I

~~~~~~~~~~~~~~~~~~~f

A

(d

exp t,R-7r']
2W sin 2$

tof

antd

fB(t) =fE( +a)6(t-- - a) (4b)

anid the corresponidinig spectra are giveni by

FA(f) = F(f) * ll%6(f - OiF)
It

FB(f) = F(f) * j, I'l- b(f -1ff-?

y=exp (i27raWV) exp i,.

iSB(f

io//A \\\ss A \u
.v. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~f

F'ig. 2-Siecollid-order saiiipli'tg of loxvs-ptls,; fetlictiott.

(Sa) Inspection of Fig. 2 yields'3

WSA(f) + 11SB(f) = I
(5b)

IS S (f) + SB(f) = (
-y(,c

The results of these conivolutionis are easily visualized:
sketches of the spectra are shown in Fig. 2.'2 Since all
time functiolns inivolved in this discussion are real, it
suffices to conisider their spectra for positive frequenicies
otnly. The spectral winidow functionis SA(J) anid SB(f)
mav be determined by the requir-emenit

FA(f)SA(f) + FB(f)SB(f) = F(f), 0 < f < IlF. (6)

12 Each spectrLum is showni as the st>um of two conipouneuits which
correspotud to the convoluitions of F(f) with differenit spectral lities
of the samiiplinig futnction.

whetice

S.1(f) - 5SR*(_f) =

ex (i 0
1)2

1

2 W. sin

2

(0 < f < 1W).

1 It is showni in Appenclix I that tieseh e(ljutionis f0lowx mllquiell
fromii (6).

(a)
F (f I

i w

i 1~~~

F

(DRAWN FOR - >2W)

C ,

--- - - - -< 0 t
_ O L

trsKNXN'XN'Xe4,. V--llll
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Linden: A Discussion of Sampling Theorems

Since the corresponding time functions are real,
SA,B(-f) =S*A,B(f). The inverse Fourier transforms of
SA(f) and SB(f) are the interpolating functions

F(f)

0 (m-I)W Wo mW (W0.

SA(t) = SB(-) =
cos (2irWt - raW) - cos 7raW

2irWt sin iraW

Finially,

f(t) = SA (t) *fA (t) + S (t) *fB (t)

= E1(;) SA( -;)

+(-+±i )SA(-tA+)i .

With a = 1/2 W, (7) reduces to (3).

SAMPLING OF BAND-PASS FUNCTIONS

The spectrum is assumed to occupy the ranige

Wo.<If <(Wo+W), as sketched in Fig. 3(a). In gen-

eral, second-order sampling must be used,14 and (4), (5)
apply. The results of the convolutions are shown in Fig.
3(b) and 3(c). The spectral window functions SA(f) and
SB(f) which are required to restore the original spec-
trum may be computed by a procedure similar to that
leading to (6).1" The result is indicated in Fig. 3(d). The
corresponding interpolating functions are'6

SA(-fh)= S* (f ) ; S (f ) SA(-f)

Fig. 3-Second-order sampling of band-pass function.

cos [27rmaW - 2r(W + WO)I] - cos [2rmaW - 2r { (2m - 1)W - WO t]
2rWt sin 27rmaW

SA(t) = cos [(2m - 1)7raW - 27r{(2m - 1)W - Wo}t] - cos [(2m - 1)7raW - 27rWot]
27rWt sin [(2m - I)raW]

SB(t) = SA(-t) (8)

where m is the largest integer for which (mr-1)W< Wo.
Eq. (7b) applies provided that SA(t) is taken to be the
function defined by (8). The separation a between the
two interlaced sampling trains is arbitrary, except for
the restriction that it may not be an integral multiple
of 1/2W unless Wo = (mr-1) W. In the latter case, a de-
velopment based on the first-order sampling of (1) and
(2) yields the interpolation formula

f n) (=22f( s(t ) (9a)

s(t) = - [sin 2irmWt - sin 27r(m - 1) WI]. (9b)

14 An exceptional case will be discussed at the end of this section.
15 The only significant difference lies in the fact that the window

functions must be computed separately for Wo f< [(2m-1)W
-2WT0o and [(2m-1)W-2W0]<f<(Wo+W).

16 This expression differs from (31) of Kohlenberg, op. cit., only
in notation; using r_2m-1. Kohlenberg's result is obtained.

It is interesting to note that the repetitive nature of
the spectra FA(f) and FB(f) of Fig. 3 offers the possibil-
ity of recovering not the original function but a fre-
quency-translated version of it. For example, if the
spectral window of Fig. 4 were used, the corresponding
time function would represent an upward frequency
translation of f(t) by W cps."7

QUADRATURE AND HILBERT TRANSFORM SAMPLING18

The sampling operation may be preceded by prepara-

tory processing of the time function. The most obvious
example is the representation of a band-pass function in
terms of its in-phase and quadrature components, each
of which may be sampled separately. Let

f(t) = A (t) cos [wot + AI(t) ] (10)

17 These remarks apply equally well to the low-pass function of
Fig. 1. Amplitude modulation could have been achieved by the use
of a suitable band-pass spectral window.

18 Goldman, Op. cit.

(7a)

(7b)

{ FA ff

} FB f)

i No
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SA (f)

0 W0+W 2mW-W. WO+2W

eB P S (R 2)
2W sin m's

exp [; (2nm+l )]

( 2

Fig. 4-Frequency-translation by use of spectral window.

and let its spectrum F(f) be confined to a frequency
band of width W, centered onfo, as shown in Fig. 5. Pro-
viding that fo > W, the in-phase and quafrature com-

ponents

fi(t) = A(t) cos &(t) and fQ(t) = A(i) sin At(t) (11)

may be obtained by multiplying f(t) by 2 cos wot and
-2 sin wot, respectively, and by filtering out the sum-

frequency components. The corresponding spectra are

given by

F1(f) = {F(f) * [6(f-fo) + 3(f + fo) }f

FQ(f) = {F(f) * i [6(f- fo) - b(f + fo) I} If (12)

where the subscript If indicates that the sum-frequency
components have been discarded. These relations are

illustrated in Fig. 5. Sincefi(t) andfQ(t) are band-limited
to - W/2 <f< W/2, each may be sampled at the rate of
W samples per second. Reconstruction of the original
function involves separate interpolations of f1(t) and
fQ(t), multiplication by cos wot and sin wlot, respectively,
and addition of the results.

First-order sampling of a band-pass function f(t) and
of its Hilbert transform

1 r+1f(r)dr 1

flu(t)
s

f(t)

*(--)
(13)

7r _0 I - Tr 71

suffices to determine the function. This result is readily
obtained by observing that the spectrum FH(f) of
fH(t) is given by

FH(f) = F(f)Y{5 - } = F(f)[-isgnf]

where F(f) is the spectrum of f(t) and is assumed to be
limited to the band WO.< If| <(Wo+W). The functions
f(t) and fH(t) are now sampled at a rate of W times per

second. Using the results of Fig. 3(b), the periodic
spectra F(f) and FH(f) may be sketched immediately, as

Fig. 5 Quadrature sampling. The direction of cross-hatching dis-
tinguishes the positive- and negative-frequenicy parts of F(f) and
the spectral contributions derived from them.

shown in Fig. 6.1' The required window functions S(f)
and SH(f) may be determined by inspection [Fig. 6(d) j,

and the corresponding interpolating functions are

sin 7rWt / W\

s (t) =
rWt - cos 2r Wo + 2)1

sin 7rWt / T
sH(t) = - - sin 2w r Wo +-I .

(14a)

(14b)

These two functions are Hilbert transformiis, as antici-
pated in the notationi. Finally,

f(t) = f(--)s(t --) +fH(-) SH(t--) (15)

SAMPLING OF PERIODIC FUNCTIONS20

While the preceding discussion does not exclude linle
spectra, its results are not particularly useful for pe-

riodic functions since the interpolation process is based
on an infinite number of samples rather than a finiite
number of points within one period. The necessary

modifications will be outlined for the low-pass case.

Letf(t) be a periodic function of period T, which con-

tains no spectral components above the Nth harmnonic,
and let the function be sampled at intervals of r seconds.
Fig. 1 applies with W=N/ T. The inequality 1/r>2W
= 2N/T cannot be satisfied with the equal sign since this
choice would destroy the identity of the spectral line at
f= N/T. The lowest acceptable rate of equispaced
sampling is therefore given by r = T/(2N-+-1). The re-

19 The similarity between Figs. 5 and 6 is evidenit. These sketches
illustrate the close connection between quadratture samiipling and the
present procedure.

20 Goldman, op. cit.

F (f)

0
* f

-.f
FI (f)

0fX
FQ(f )

2o W
2 2
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Linden: A Discussion of Sampling Theorems

(a) I

(m-l)W WO mW W0i+W (m+l)W

(b)

(c)

S f) I I1(d)
(d'L [~~~111112'I 11111111 I.f
s H(f)

L >2wX w r

F(f )
(SHOWN FOR N-4) WEIGHTING FACTOR = T

____ I",
44-

1 /
11 t(a)1 ii 11~

(b)

__~~

0-

(2m-I) W-Wo

_N+I -_N 0 N N+
T( T T I T

SO()

I111 I1 tiT 1hlTn-rrnTlT7.]d
O N+ 12

T

N

T

IH (f)

Fig. 7-Sampling of periodic low-pass function.

SAMPLING OF A FUNCTION AND ITS DERIVATIVE

Simultaneous sampling of a funiction and of its deriva-
tive yields two periodic spectra from which the original
spectrum may be recovered by appropriate spectral
windows. It is assumed that the spectrum of (d/dt)f(t)
is given by i2irfF(f). The procedure will be illustrated
for band-limited, low-pass functions. Writing F+(f) and
F(f) for the positive and negative frequency parts of
F(f), the spectra of f(t) and f'(t) are sketched21 in Fig.
8(a). The spectra of the sampled functions

fA(t) = f(t) E 6 (t W
WO W0+W

Fig. 6.-Hilbert transform sampling.

sultinig spectrum is sketched in Fig. 7(a). Since there are
gaps between successive replicas of F(f), the spectral
window is not uniquely determined. The window func-
tion S(f) shown in Fig. 7(b) has the advantage of provid-
ing independent sampling since the corresponding inter-
polating function s(t) has zeros at all sampling points
but one. Eq. (3) may now be applied with obvious
changes of notationi:

+00

f(t) = E f(nT)s(t - nT);
n1 =-30

T
= T (16a)

2N + 1

aind

(18)

are shown in Fig. 8(b). Using the condition of (6), one
obtains in the range 0 <f < W,

WF+(f)SA(f) + i27rfWF+(f)SB(f) = F+(f)
WF_(f - W)SA(f)

+ i2r(f - W)WF_(f - W)SB(f) = 0 (19)

whence
sin 2r( )I

s(t) =

2r< t

(16b) SAW(f)= -

1
SB(f) = i2rW

0 <f < w

0<f<W. (20)

Sincef(t) is periodic with period T, (16a) may be written
as

2N

f(t) = f(nr)p(i - nr)
n,1=)

where

sin (2N + 1) -t
~~00 ~~~T

p(t) = , s(t-kT) = (17)
(21V + 1) sin-t

T

The initerpolating functions are

/sin 7rWl\2
SA(t)= rWt )

SB (t) = ISA (t)

so that

f(t) = fA(t) * SA(t) + fB(t) * SB(t)

(- Wf SA (t--)

21 These sketches are equivalent to (8) of Fogel, op. cit.

(21)

(22)

TZZIZZZZZZZZZA 0- f

o f
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PROCEEDINGS OF THE IRE

F ( f )

F (f)
%

F F+(f)

(a) /0/~
0f

-W 0 W

II
i2vrf F(f)

I 2i r f F+(f )

Z Sr(r)(f) [i2ir(f - k/T)] = TbO,k,
r=O

(f > ()

k = k0ni2t(n), ( R -) [kllitl(i) + R d

it = °,1 21, 4, * * *, (R -1) (R odd)
- 0, 2, 4, . . .,R (R even)

where 60,k is one or zero according as k is zero or nioi-
zero, and where k ,.,(n) is the smlallest integer- such that

FB (f )

Fig. 8-Samplinig of a function and its derivative. The direction of
cross-hatching distinguishes the positive- and negative-frequency
parts of F(f) and the spectral contributions derived from them.

The more general case of first-order sampling of a real
low-pass function and its first R derivatives may be
treated by similar methods. The derivation is straight-
forward, but somewhat lengthy; it is given in Appendix
III and leads to the following results. The function- and
its R derivatives are sampled at intervals of r (R
+ 1) /2W seconds. The spectral window function S(r)(f)
for the rth derivative (r=0, 1, , R) is obtained in
2(R+1) segments, each of width W/(R+1), startinlg at

f= -W:
R

S ((f) E Sn (r)

n=-(R+l)

Each segment represents a separate problem; however
the following relations reduce the number of functions
which must be determined:

S-(n+1) (r) ( f) = [Sn (r)(f)]*

S2m+l (r) (f) = S2m(r) (f) (R odd)

S2m+l (r) (f) = S2m+2 (r) (f) (R even).

The Sn(r)(f) for the remaining (R+1)/2 (R odd) or

(R+2)/2 (R even) values of n are found by solving the
following sets22 of equations:

22 Each set consists of (R+±) equations, corresponding to the
(R+1) unknown functions S() Sn(R).

n-R
kin ill(n) >

The interpolating functions s(r)(t) are then obtained as
the inverse Fourier transforimis of the S(r)(f), and

R drf(mT)
1() Z S (r) (t -MT)

r=O n dtr

= drf(m ) S(r) mT)
.TdLr=; dir

APPENDIX I

If the positive and negative-frequency parts of F(f)
are designated as F+(f) and F_(f), [where F+*(-f)
= F_(f) ], one has in the interval 0 <f< W

FA(f) = WF+(f) + WF(f - W),

W
FB(f) = WF+(f) + F_(f - W).

Substituting into (6),

F+(f) [WSA4(f) + WSB(f) - 1]

W -
+ F_(f - W) WSA(f) + - SB(f) = 0.

There is, in general, no functional relationship between
F+(f) and F_(f- W) = F+*(WW-f); equating to zero the
coefficients of F+(f) and F_(f- W), one obtainis the two
equations following (6).

APPENDIX II

cc 0

p(t) = s(t - kT) = s(t) * e( - kT)].
k=-ook=o

The corresponding spectrum is

00 k

P(f) = S(f) ko T II1)

2N +1 k=-N ( T)

The last equality may be verified by inspection of the

window function S(f) shown in Fig. 7(b). Finally,

I FA (f )

i2xrf F_(f ) t

,WF tf )

(b)

X WF (f-W)

-,I

ALi
/ g i 2 v f W F+ (ft

i27 (f-W)WF- (f-W)

1224 July
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irt
N
1^T sin (2X + 1)-

2+1 k=-N 7rt
(2N + 1) sin-

T

F (f )

=
R+I

F FI
I ~

F1IF IF IFF~ 'F F F o F, 3
1 21

-W H W

APPENDIX III

It will be assumed that the spectrum of the rth deriva-
tive is (i2rf)rF(f). The function and its first R deriva-
tives are sampled at intervals of r_ (R+ 1) /2W seconids.
Their spectra are therefore conivolved with the impulse
functioni train

' Z3f k) (23)

Each of the (R+ 1) spectra extends fromi -W to W, and
will be divided into 2(R+1) intervals of width W/R+1
= 1/2r, starting atf= - W. Let Fn(f) be equal to F(J) in
the nth interval and zero outside it, i.e.,

R

FR(f)= E Fn(f).
n=- (R+1)

> (f-Ir)

-3 2 2 3

r r T r r r

(ILLUSTRATION DRAWN FOR R=4)

Fig. 9- Sampling of a function and its first R derivatives.

the summation may be restricted to those integral val-
ues of k which satisfy the inequality

-(R + 1) < (n - 2k) <R.

For each n, there are therefore (R+1) values of k, start-
inlg with kr11in(8n); the latter is the smallest integer which
satisfies

(24)

Since f(t) is assumed to be real, F-(l+j) (-f) = Fn*(f). Fig.
9 shows the spectrum F(f), the numbering of its (R+1)
intervals, and the convolving train of impulse functions.
The convolution process is visualized in terms of

erecting replicas centered on the impulse functions. It is
easily seen that a replica of F(f), centered on the im-
pulse function atf= k/r, will contribute to the (2k+j)th
interval the function

Fj(f
k-
T

Using the notation

D[g(f)] k)

a replica of F(f) centered on b(f-k/T) will contribute to
the nth interval the function I/TDk [Fn-2k(f) ]. Let
F(r)(f) be the spectrum obtained from the convolutioll
of (i27f)rF(f) with the train on impulse functions of (23),
and let FJ(r)(f) be its nth segment, i.e.,

R

F(r)(f) = E F(r
n=-(R+1)

Then it follows from the preceding discussioni that23

1k'i,(,n)+R
Fn ((f) = E Dk[(i2rf)Fl.-2k (f) (25)

k= nin(n)

Since Fn-2k(f) vanishes outside the interval (- W, W),

"I Eq. (25) is equivalent to (14) of Fogel, op. cit.

n-R
kniin(n) >

2
(26)

In order to recover F(f) from the (R+ 1) spectra
F()r(f), each F(r)(f) is multiplied by a spectral winidow
functioj S(r)(f). One then demands that

R

E S(r)(f) F(r)(f) = F(f).
7-0

Sincef(t) was assumed to be real, the S(r)(f) are spectra
of real functions, and it suffices to consider positive fre-
quenicies onily. Each of the (R+1) positive-frequency inl-
tervals nmust be considered separately so that (27) repre-
sents (R +1) separate equations;

R

E S.(r))(f)F5(r)(f) = F, (f); n = 0, 1, R (28)
r=O

where S0(r)(f) represents the nth segmlenit of S(r)(f), with

S_(nl) (r)(-f) = [Sr (?)(f) *. (29)
Substituting (25) into (28),

R kICmin (n)+R

S. (r)(f) E Dk[(2wfi)rFn-2k(f)] = F,.(f)
T k=kA nin(n)

=0, 1, **,R. (30)

Interchanginig orders of summation,
kmin (70+R R

E Dk[Fn_2k() ] E Sn(r)(f)Dk[(27rfi)r]
k=kmin (n) r=o

= TFn(f). (31)

Since the Fn(f) are independent, the coefficient of each
Dk [Fn_2k1 must be identically zero. For each value of n,

(31) thus provides (R+ 1) equations

(27)

I.
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R

E Sn (r) (f) Dk[(2rfi))r] = 'rbo,k
r=O

k = kmini(n), , [kmin(n) + RI
n = 0,2 , R

Thus

S2,ln1 (r) = S2M (r)

(32)

where 30,k is one or zero according as k is zero or 11011-
zero.

Inspection of (26) shows that for odd R,

kmin(O) = klijw(1)7
while for even R,

knill(l) = kmin(2),

kmin(2) = kmin(3), etc.,

k,1i.(3) = k,.i,(4), etc.

(R odd)
S2?±+l(r) - S2m+ (r) (R even).

It is therefore sufficienit to solve (32) for eveni valuLes
of n so that there are (R+1)/2 or (R+2)/2 sets of
equationis, accordinig to whether R is oddi or even.
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An Application of Piecewise Approximations to
Reliability and Statistical Design*

HARRY J. GRAY, JR.t, MEMBER, IRE

Summary-If a random variable can be expressed as a weighted
sum of other random variables having known distributions which can
be approximated piecewise by, for example, polynomials, the distri-
bution of the random variable can be obtained, relatively easily, by
the use of the algorithm described in this paper.

INTRODUCTION
I N many systems, such as missile, computer, or coIn-

trol systems, there may arise a need for the determi-
nation of the probability of failure due to the grad-

ual deterioration of the system components. Associated
with this need is the determination of the probability
that a specified characteristic of the system or a part of
the system will be outside of acceptable limits on ac-
counlt of a chance unfavorable combination of com-
ponenit values. Examples of specific characteristics
might be: the delay of a pulse circuit, the phase margin
in a feedback control system, the gain of a linear ampli-
fier quantities all of which are functions of the values
of the components involved such as resistances, capaci-
tanices, vacuum tube transconiductances, and plate re-
sistances, etc. Denote the characteristic by T and the
values of the components involved by x1, x2, , x,.

Then

T = T(x1, X2, . Xn). (1)

* Original imianuscript received by the IRE, July 2, 1958; revised
maniuscript received, March 6, 1959.

t Moore School of Electrical Engineering, Philadelphia 4, Pa.

It is often possible to express sufficiently accurately the
deviation 5T of the characteristic T from some niomiiinal
value in terms of the deviations of the component val-
ues, Axi, from their meani values as follows:

6T = ai5x1 + a2bX2 + * * * + a,,6x,1. (2)

The numbers, a,, a2, , a,, canl be determiined either
by experiment or by calculation. Eq. (2) mzay be re-
written:

5T/To = blxll/xlo + b2bX2, X2O + * + b,.6xn/xnO;
bi= aixio/To (3)

where To, x1o, x20, , X0o are the "meani" values of
T, x], , xX,. [To T(xio, X20, , xno) 1. Eq. (3) canl
be considered as expressing the percentage change in the
characteristic resulting from certain percentage chanlges
in the componenits involved, as the equality is not
affected by multiplying both sides by 100. The problem
theni becomies one of determining how t is distributed
kniowing how the (i are distributed where

41+42+ ' ' *+07 (4)

and t=bT/To, (ibj=xilxio; i=1, 2, n, the meani
of ti is zero for i= 1, 2, , n, and the mean of t is zero.
The (i are assumed to be independent ranidomn vari-
ables.1

1 The assumption that the means of t and (i are zero is not neces-
sary, bLht simplifies the (liscuissioni that follows.
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