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A Discussion of Sampling Theorems”

D. A. LINDENT, ASSOCIATE MEMBER, IRE

Summary—The convolution theorem of Fourier analysis is a con-
venient tool for the derivation of a number of sampling theorems. This
approach has been used by several authors to discuss first-order
sampling of functions whose spectrum is limited to a region including
the origin (‘‘low-pass” functions). The present paper extends this
technique to several other cases: second-order sampling of low-pass
and band-pass functions, quadrature and Hilbert-transform sam-
pling, sampling of periodic functions, and simultaneous sampling of a
function and of one or more of its derivatives.

INTRODUCTION

EVERAL sampling theorems have appeared in the
S engineering literature.”® These may be derived in

a particularly perspicuous manner by means of the
convolution theorem of Fourier analysis. The sampling
process is regarded as a multiplication by a periodic se-
quence of §-functions, its counterpart in the frequency
domain being a convolution by a train of equispaced 6-
functions. Interpolation—the recovery of the original
signal from its sample values—is viewed in the fre-
quency domain as a process of reconstructing the orig-
inal spectrum by means of a spectral “window.” The
corresponding time domain operation consists of the
convolution of the sample impulses with the inverse
Fourier transform of the window function. This ap-
proach has been used by a number of authors®=* to dis-
cuss the equispaced sampling of low-pass functions. It
is the purpose of this paper to present a consistent set of
heuristic derivations for a number of additional sam-
pling theorems.

* Original manuscript received by the IRE, November 10, 1958;
revised manuscript received, March 30, 1959. Part of the work re-
ported here was done under Nat'l. Sci. Found. Fellowship No.
28,215. Space and facilities were supplied by Office of Naval Res.
Contract No. 225(44).
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The following transform definitions will be used:

F(f) = wf(t)e‘i“'dt, w = 2xf

+00

f) = F(f)edf.

-0

It will be convenient to use the notation
+%
a(t) = b(t) Ef a(7)b(t — 7)dr.

Following the nomenclature of Kohlenberg,> sampling
of a time function® will be designated as first-order if
the sample points are equispaced. Second-order sam-
pling involves two interleaved sequences of equispaced
sampling points.

SAMPLING OF Low-Pass FuncTioNs

The simplest case is that of a time function f(f) whose
spectrum F(f) is limited to — W<f<W. The result of
sampling the function at regular intervals spaced 7
seconds apart is!?

J@) = ft) 280t — nr) = 3 f(nr)o(t — nr). (1)
The transform of
. 1 n
S8t — nr)is 3, — 6<f— —)
T T
Multiplication in the time domain corresponds to con-

volution in the frequency domain, and the first equality
of (1) leads to

Fp=Fp+ X 1 6<f - 1)

n

1 n ,
> —F(f- —)- (2)
n T T

Apart from the weighting factor 1/7, F(f) is seen to con-
sist of replicas of F(f) centered on the spectral lines
o(f—n/7), as illustrated in Fig. 1.% The possibility of
recovering the original spectrum is insured if 1/72>2W;
equality is permissible if F(f) does not contain a é-func-

¢ All time functions are assumed to be real unless specifically des-
ignated as being complex.

10 AJl summations are from — «© to + % unless otherwise stated. .

1 F(f) is in general a complex function and is indicated symboli-
cally in Fig. 1 (a). Weighting factors such as 1/7 will be indicated as
shown in Fig. 1 (b).
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tion at f=1IV. Assuming that sampling takes place at
the lowest permissible rate, one has 1/7=2W. The
original spectrum may be recovered by multiplying
E(f) by the spectral window function S(f) shown in
Fig. 1(c). The equivalent operation in the time domain
is the convolution of f(f) by the inverse Fourier trans-
form s(f) of S(/), i.e.,

1) = s(t) * 2 f(nr)o(t — nr) = 2 f(nr)s(t — nr).

Substituting r=1/2W and the functional form of s(¢),

n
sin 2w W (t - —--~>
20

7
o= Zs(5) @
27ru'<t - ——)
2W

The low-pass function f(¢) may also be subjected to
second-order sampling. The two interlaced sampling
trains

and

n
ot — ——
1= )

will be designated by the letters .{ and B, respectively.
The sampled functions are

7 n
no = Zo()s(- ) (“"
and
] ] ‘
w0 = Zi(Gpre)o( - ma)
and the corresponding spectra are given by
Fa(f) = F()) = 25 Wa(f — nWW) (5a)

Fe(f) = F(f) * 2 W(i) ' 8(f — nll) (5b)
" Y

v = exp (I2wal) = exp iB. (5¢)
The results of these convolutions are easily visualized:
sketches of the spectra are shown in Fig. 2.2 Since all
time functions involved in this discussion are real, it
suffices to consider their spectra for positive frequencies
only. The spectral window functions Si(f) and Ss(f)

may be determined by the requirement

Fa(NSa(f) + Fe()Ss(f) = F(f), 0 <f<W. (6)

2 Each spectrum is shown as the sum of two components which
correspond to the convolutions of F(f) with different spectral lines
of the sampling function.

PROCEEDINGS OF THE IRE

July

Ff)

-w Q w

. i
(o) FLH ' (DRAWN FOR + >2w)

;
V‘ 1 T
i 1
i H
'
,_./‘-\‘ | ” ¢ ’/‘\ ‘/__
T T i3
+ . + ¢
0 |
i

L
T

Al-

0
i
1

N\

Fig. 1—First-order sampling of low-pass function.
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Fig. 2—Second-order sampling of low-pass function.

Luspection of Fig. 2 yields®

WSa(f) + WSg(f) =1

0
WS4(f) + —Ss(f) =0
Y

(-]

1
21 sin — B8
)

wheunce

Salf) = Su*()) =

0 <f<Ww.

B [t 1s shown in Appendix [ that these equations Tollow uniguely
from (6),
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Since the corresponding time functions are real, Fi)
Sa,8(—f) =S*4,5(f). The inverse Fourier transforms of (o)
Si(f) and Ss(f) are the interpolating functions T — oW WgrW)  (manw f
| |
0 () cos 2xWt — waW) — cos waW (72) { h\ Fee 3
) = sp(—1) = : a ~ > )
‘ ? 2o Wt sin maW (b \\% w ~\€
T T f
Finally, i ! :' Logtn
) = sa(t) xfa(t) + sp(t) * f5(D) "”Ww ] R
P T ; : —
_ " " P P |
=)
n n = Y i .
+f<—vf/—+a>s,1<—l+w+a>- (7b) ! } T } > Fglf)
-7 Vem: Y-
With a=1/2W, (7) reduces to (3). W’& R i/wj,m“ ! .
1 |
SAMPLING OF BAND-PAss FUNCTIONS ! i } : [‘ s )]
! | | exp|-i LB'I
The spectrum is assumed to occupy the range b ll }M'E;:—(ZT,IS—)Z*
Wo<|f| <(Wo+W), as sketched in Fig. 3(a). In gen- o || 2
eral, second-order sampling must be used,* and (4), (5) o { I [_( x
. . N Sptf) \ | _exe[i{mB 2)]
apply. The results of the convolutions are shown in Fig. @ L ; ™ f2% ~Jwsmmp
3(b) and 3(c). The spectral window functions S(f) and . : I” Jﬁ“” i l
Sp(f) which are required to restore the original spec- Yo (BmINW, VoW 2wy Wor2w
trum may be computed by a procedure similar to that N
leading to (6).% The result is indicated in Fig. 3(d). The SAENTSED 3 Sglne syen)
corresponding interpolating functions are!® Fig. 3—Second-order sampling of band-pass function.
cos [2rmaW — 2x(W + Wo)t] — cos [2zmaW — 2x{(2m — )W — W,}(]
2x Wi sin 2emaW
SA(t) =
n cos [(2m — V)waW — 2x{(2m — H)W — Wolt] — cos [(2m — 1)maW — 22 W]
2z Wt sin [(2m — D)maW]
-sp(t) = sa(—1) (8)

where m is the largest integer for which (m—1)W < W,,.
Eq. (7b) applies provided that s4(f) is taken to be the
function defined by (8). The separation a between the
two interlaced sampling trains is arbitrary, except for
the restriction that it may not be an integral multiple
of 1/2W unless Wy=(m—1)W. In the latter case, a de-
velopment based on the first-order sampling of (1) and
(2) yields the interpolation formula

10 =% 1(55) (-~ 7)

1
s(t) = Py [sin 2rmWt — sin 2x(m — 1)Wt|. (9b)

Wi

(9a)

* An exceptional case will be discussed at the end of this section.

15 The only significant difference lies in the fact that the window
functions must be computed separately for Wo<f<[(2m—1)W
—2W) and [2m—1)W =2We] <f<(Wo+W).

16 This expression differs from (31) of Kohlenberg, op. cit., only
in notation; using »=2m —1. Kohlenberg's result is obtained.

It is interesting to note that the repetitive nature of
the spectra F4(f) and Fz(f) of Fig. 3 offers the possibil-
ity of recovering not the original function but a fre-
quency-translated version of it. For example, if the
spectral window of Fig. 4 were used, the corresponding
time function would represent an upward frequency
translation of f(¢) by W cps.'?

QUADRATURE AND HILBERT TRANSFORM SAMPLING'®

The sampling operation may be preceded by prepara-
tory processing of the time function. The most obvious
example is the representation of a band-pass function in
terms of its in-phase and quadrature components, each
of which may be sampled separately. Let

f(&) = A@t) cos [wot + ¢(9)] (10)

17 These remarks apply equally well to the low-pass function of
Fig. 1. Amplitude modulation could have been achieved by the use
of a suitable band-pass spectral window.

18 Goldman, op. cit.
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Fig. 4—Frequency-translation by use of spectral window.

and let its spectrum F(f) be confined to a frequency
band of width W, centered on fy, as shown in Fig. 5. Pro-
viding that fo> W, the in-phase and quadrature com-
ponents

fi(t) = A(8) cos Y(¢) and fo(1) = A() sinyg (1) (11)

may be obtained by multiplying f(f) by 2 cos we and
—2 sin wet, respectively, and by filtering out the sum-
frequency components. The corresponding spectra are
given by

{F() « [8(f = fo) + 8(f + [0 1} s
{F(fy*i[s(f — fo) — o(f + fo) |} s

Fi(f) =

Fo(f) = (12)
where the subscript /f indicates that the sum-frequency
components have been discarded. These relations are
illustrated in Fig. 5. Since f7(£) and fo(¢) are band-limited
to —W/2<f<W/2, each may be sampled at the rate of
W samples per second. Reconstruction of the original
function involves separate interpolations of fr(f) and
fo(t), multiplication by cos wot and sin wyt, respectively,
and addition of the results.

First-order sampling of a band-pass function f(¢) and
of its Hilbert transform

ful)) = — — f T ()( ;) (13)

t—7

suffices to determine the function. This result is readily
obtained by observing that the spectrum Fgu(f) of
fu(t) is given by

1
Falf) = F(f)ﬁ{— ;} F(§)[~i sgnf]

where F(f) is the spectrum of f(f) and is assumed to be
limited to the band Wo< |f| <(W,+ W). The functions
f(¢) and fu(t) are now sampled at a rate of W times per
second. Using the results of Fig. 3(b), the periodic
spectra F(f) and Fu(f) may be sketched immediately, as
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Fp 0

d Falf)

Fig. 5—Quadrature sampling. The direction of cross-hatching dis-
tinguishes the positive- and negative-frequency parts of F(f) and
the spectral contributions derived from them.

shown in Fig. 6.1° The required window functions S(f)
and Sg(f) may be determined by inspection [Fig. 6(d) |,
and the corresponding interpolating functions are

sin 7 Wi w
s() = —cos 2w | Wo+ — )¢ (14a)
Wit 2
sin 7 Wi w
su(l) = — ————sin 27| W, + ~t>. (14b)
Wi 2

These two functions are Hilbert transforms, as antici-
pated in the notation. Finally,
5)- a9

n
10 = o) (=) () -
n w
While the preceding discussion does not exclude line

SAMPLING OF PERIODIC FUNCTIONS??
spectra, its results are not particularly useful for pe-
riodic functions since the interpolation process is based
on an infinite number of samples rather than a finite
number of points within one period. The necessary
modifications will be outlined for the low-pass case.

Let f(¢) be a periodic function of period 7', which con-
tains no spectral components above the Nth harmonic,
and let the function be sampled at intervals of 7 seconds.
Fig. 1 applies with W=N/T. The inequality 1/7>2W
=2N/T cannot be satisfied with the equal sign since this
choice would destroy the identity of the spectral line at
f=N/T. The lowest acceptable rate of equispaced
sampling is therefore given by r=T7T/(2N+1). The re-

19 The similarity between Figs. 5 and 6 is evident. These sketches
illustrate the close connection between quadrature sampling and the
present procedure.

20 Goldman, op. cit.
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Fig. 6.—Hilbert transform sampling.

sulting spectrum is sketched in Fig. 7(a). Since there are
gaps between successive replicas of F(f), the spectral
window is not uniquely determined. The window func-
tion S(f) shown in Fig. 7(b) has the advantage of provid-
ing independent sampling since the corresponding inter-
polating function s(f) has zeros at all sampling points
but one. Eq. (3) may now be applied with obvious
changes of notation:

fl) = i fur)s(t — nr); T

n=—x

= » (16
w1 (10

, <\ + %)
sin 27 ¢
T
N+ 13
27 ( 2) t
T

Since f(¢) is periodic with period T, (16a) may be written
as

s() =

(16b)

0 = X fur)plt — nr)

n=0

where

+

p() = D st—kT) =

km—oo

sin 2N + 1) —¢
T

(17)
™

2N 1) sin —¢

(2N + 1) sin T

The last equality is proved in Appendix II.
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Fig. 7—Sampling of periodic low-pass function.

SAMPLING OF A FUNCTION AND ITS DERIVATIVE

Simultaneous sampling of a function and of its deriva-
tive yields two periodic spectra from which the original
spectrum may be recovered by appropriate spectral
windows. It is assumed that the spectrum of (d/dt)f(¢)
is given by 12wfF(f). The procedure will be illustrated
for band-limited, low-pass functions. Writing F,(f) and
F(f) for the positive and negative frequency parts of
F(f), the spectra of f(f) and f'(¢) are sketched? in Fig.
8(a). The spectra of the sampled functions

f10 = 1) £ 0 (t -2

and

(18)

n
0 =1t 6([ — —)
fa() = () Z -
are shown in Fig. 8(b). Using the condition of (6), one
obtains in the range 0<f< W,

WE.(f)Sa(f) + 2afWF,(f)Ss(f) = F+(f)
WF_(f — W)Sa(f)
+ 2x(f — W)WF_(f — W)Se(f) =0 (19)

whence

sA(f>=i<1—%), 0<f<W

W
Sa(f) ! 0<f<W (20)
BT W '
The interpolating functions are
sin #W\?
- ()
Wi
sa(t) = tsa(t) (@

so that

(1) = fa(t) * sa(t) + fa(t) * s5(2)

STy @3

2t These sketches are equivalent to (8) of Fogel, op. cit.
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Fig. 8—Sampling of a function and its derivative. The direction of
cross-hatching distinguishes the positive- and negative-frequency
parts of F(f) and the spectral contributions derived from them.

The more general case of first-order sampling of a real
low-pass function and its first R derivatives may be
treated by similar methods. The derivation is straight-
forward, but somewhat lengthy; it is given in Appendix
I11 and leads to the following results. The function and
its R derivatives are sampled at intervals of 7=(R
+1)/2W seconds. The spectral window function S®(f)
for the rth derivative (r=0, 1, - - -, R) is obtained in
2(R+1) segments, each of width W/(R+41), starting at
f=—W:

2 SO0,

n=—(R41)

SO(f) =

Each segment represents a separate problem; however
the following relations reduce the number of functions
which must be determined:

S P (=f) = [S.O(N)]*
Somi1M(f) = SanV(f) (R odd)
S2m+1(')(f) = S?m_,.z(r)(f) (R even).

The S.®(f) for the remaining (R+41)/2 (R odd) or
(R+2)/2 (R even) values of »n are found by solving the
following sets? of equations:

22 Each set consists of (R41) equatlons, corresponding to the
(R+1) unknown functions S,@, - - -, S,®,
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rZ; SN2 (f = R/ D) = 180s, (S > 0)
B = kuin(n), -+, [kuin(n) + R]
n=20,2,4 .-, (R—1) (R odd)
=0,2,4,---,R (R even)

where 8,; is one or zero according as k is zero or nou-
zero, and where k,,in(#) is the smallest integer such that

n— R
kmin(n) 2

The interpolating functions s () are then obtained as
the inverse Fourier transforms of the S®(f), and

d
f0) = ZZ f(

r=0 m

s‘”(t — m7)

B R drf(mr)
B Z [ 2 dir

r==0

sO@ — mr)].

APPENDIX |

If the positive and negative-frequency parts of F(f)
are designated as F.(f) and F_(f), [where F *(—f)
=F_(f)], one has in the interval 0 <f<W

Fa(f) = WE(f) + WFE(f = W),

W
Fr(f) = WF(f) + . F_(f—W).
Substituting into (6),

F () [WSa(f) + WSs(f) — 1]
w
+ F_(f— W) [WSA(f) + — SB(f):| =0
0%

There is, in general, no functional relationship between
F.(f) and F_(f— W)= F.*(W—f),; equating to zero the
coefficients of F.(f) and F_(f— W), one obtains the two
equations following (6).

ArpPENDIX 11

() = i s(t — kT) = s(2) *I: i ot — kT):l.

k=—c0 k=—cw0

The corresponding spectrum is

PG = 5G) 3 —1~5<f——>

LEY

The last equality may be verified by inspection of the
window function S(f) shown in Fig. 7(b). Finally,

-

IN + 1w
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. oy 1 i F(f)
N sin ( A ) ._]: : : I : re%
D = i 2TITHE = i I
P() 2V + 1 k=Z_N ( ) .ot Fls F—ai F—ag F~2i L E A i F3 i Fa
(2]V + 1) sin — — 1 1 1 : 1 ! 1 1 . > f
r —f k=
AppENDIX III +38(1-%)

It will be assumed that the spectrum of the rth deriva-
tive is (227f)"F(f). The function and its first R deriva-
tives are sampled at intervals of 7= (R+1)/2 W seconds.
Their spectra are therefore convolved with the impulse

function train
1 k
)
T ) T

Each of the (R+1) spectra extends from — W to W, and
will be divided into 2(R+1) intervals of width W/R+41
=1/27, starting at f = — W. Let F.(f) be equal to F(f) in
the nth interval and zero outside it, z.e.,

(23)

R

Ffy = 2
n=—(R+1)
Since f(t) is assumed to be real, F_.+1)(—f) = F.*(f). Fig.
9 shows the spectrum F(f), the numbering of its (R+1)
intervals, and the convolving train of impulse functions.
The convolution process is visualized in terms of
erecting replicas centered on the impulse functions. It is
easily seen that a replica of F(f), centered on the im-
pulse function at f=k/7, will contribute to the (2k+j)th

interval the function

1 k

La-b).

T T
Using the notation

D[g(n] = g(f - é)

F.(f). (24)

a replica of F(f) centered on 6(f—k/7) will contribute to
the nth interval the function 1/7D*[F,_o(f)]. Let
F®(f) be the spectrum obtained from the convolution
of (i2wf)" F(f) with the train on impulse functions of (23),
and let F,(f) be its nth segment, 7.e.,

FO(f) = Z F, ().

n=—(R+1)

Then it follows from the preceding discussion that?

kmin (W+R
F,O() =— 3 DH@2rf)Fuu(f)]. (29
T k=kpin ()

Since F,_x(f) vanishes outside the interval (— W,W),

8 Eq. (25) is equivalent to (14) of Fogel, op. cit.

: =
b
wlu—l—b

oA
E[NY S—
U
N Sl
.‘l—._b
- A=
[S T
Al= p———p
- |
LTI e—
n
A=
] e
“y
)
L

(ILLUSTRATION DRAWN FOR R=4)

ig. 9— Sampling of a function and its first R derivatives.

the summation may be restricted to those integral val-
ues of £ which satisfy the inequality

—(R+1) < (n—2k) <R

For each #, there are therefore (R+1) values of &, start-
ing with &win(n); the latter is the smallest integer which
satisfies

n— R
kmin(") 2 *

(26)

In order to recover F(f) from the (R+1) spectra
F®(f), each F")(f) is multiplied by a spectral window
function S@(f). One then demands that

R

2 SONEFD(f) = F()). (27)

r=0
Since f(¢) was assumed to be real, the S®(f) are spectra
of real functions, and it suffices to consider positive fre-
quencies only. Each of the (R+1) positive-frequency in-

tervals must be considered separately so that (27) repre-
sents (R41) separate equations;

2L SONEO() = Fuf); n=0,1,---R (28)

r=0

where S,M(f) represents the nth segment of S®(f), with

S—twiny P(=f) = [Sa(D]*. (29)
Substituting (25) into (28),
R Fmin (W)+R
250N — X DHCnfiyFaulf)] = Fu(f)
rel T k=kpin()
n=01---, R (30
Interchanging orders of summation,
kmin (R)+R R
2 DHFas(N] X 8.0 DH[(2nfi) ]
k=lcmin(n) r=0
= 7F,(f). (31)

Since the F,(f) are independent, the coefficient of each
D¥[F,_s] must be identically zero. Fer each value of n,
(31) thus provides (R+1) equations
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X SO DHafiy] = rous

r=0
k= kmin(")y Tty [kmin(n) + R]
n=20/2---,R (32)

where 08¢, 1s one or zero according as k is zero or non-
zero.
Inspection of (26) shows that for odd R,

kmin(o) = kmin(l), kmin(z) = kmin(s), etc.,
while for even R,

kmin(l) = kmin(z)’ kmin(s) = kmin(4)» etc.
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Thus

Som1® = Sop®

S‘Zm+1 M = S‘2m+‘2(r)

(R odd)
(R even).
It is therefore sufficient to solve (32) for even values

of n so that there are (R+1)/2 or (R+2)/2 sets of
equations, according to whether R is odd or even.
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An Application of Piecewise Approximations to
Reliability and Statistical Design”
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Summary—If a random variable can be expressed as a weighted
sum of other random variables having known distributions which can
be approximated piecewise by, for example, polynomials, the distri-
bution of the random variable can be obtained, relatively easily, by
the use of the algorithm described in this paper.

INTRODUCTION

N many systems, such as missile, computer, or con-
1—[ trol systems, there may arise a need for the determi-
nation of the probability of failure due to the grad-
ual deterioration of the system components. Associated
with this need is the determination of the probability
that a specified characteristic of the system or a part of
the system will be outside of acceptable limits on ac-
count of a chance unfavorable combination of com-
ponent values. Examples of specific characteristics
might be: the delay of a pulse circuit, the phase margin
in a feedback control system, the gain of a linear ampli-
fier—quantities all of which are functions of the values
of the components involved such as resistances, capaci-
tances, vacuum tube transconductances, and plate re-
sistances, etc. Denote the characteristic by 7T and the
values of the components involved by x1, xa, « + «, X,

Then

T = T(x, x2, -+ * , &n). (1)

* Original manuscript received by the IRE, July 2, 1958; revised
manuscript received, March 6, 1959.
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It is often possible to express sufficiently accurately the
deviation 87 of the characteristic T from some nominal
value in terms of the deviations of the component val-
ues, 0x;, from their mean values as follows:

0T = 11165\'71 + 026962 + LR + (1,,61‘,1. (2)

The numbers, ai, as, - - -, a, can be determined either
by experiment or by calculation. Eq. (2) may be re-
written:

6T /Ty = blaxl/xlo + babxa/xa0 + - - - A buban/%no;
b,’ = dixio/'To l = 1, 2, AR /2 (3)

where To, %10, %20, * * *, X, are the “mean” values of
T, x1, -+, % [TomT(x10, %20, -+ +, %n0) |. Eq. (3) can
be considered as expressing the percentage change in the
characteristic resulting from certain percentage changes
in the components involved, as the equality is not
affected by multiplying both sides by 100. The problem
then becomes one of determining how £ is distributed
knowing how the £, are distributed where

E=t+&+ - +& 4

and §=0T/T, £&;=bd8x:/x:0; i=1, 2, - - -, n, the mean
of ¢;iszeroforz=1,2, - - -, n, and the mean of £ is zero.
The £&; are assumed to be independent random vari-
ables.?

1 The assum_ption that the means of £ and &, are zero is not neces-
sary, but simplifies the discussion that follows.



